Nefsky B, Bretscher A
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853.
Eur J Biochem. 1992 Jun 15;206(3):949-55. doi: 10.1111/j.1432-1033.1992.tb17005.x.
Actin from yeast has been reported previously to have unusual polymerization properties. Here we report a simple sensitive spot assay for actin and use it to develop a high-yield procedure for the purification of actin from the yeast Saccharomyces cerevisiae. The polymerization properties of purified yeast actin are quantitatively similar to all other characterized actins. We have characterized this actin with respect to its ability to interact with yeast profilin and tropomyosin, the only yeast actin-binding proteins so far purified and characterized. Yeast profilin can sequester yeast actin monomers and thereby reduce the ability of yeast actin to polymerize, whereas it has little effect on the degree of polymerization of rabbit skeletal muscle actin. By contrast, there is no apparent difference between the binding of yeast or smooth muscle tropomyosin to yeast or rabbit skeletal muscle actin. The availability of purified yeast actin should facilitate a detailed examination of its interaction with recently discovered yeast actin-binding proteins. Greer and Schekman (1982) [Greer, C. & Schekman, R. (1982), Mol. Cell Biol. 2, 1279-1286] reported that an intrinsic property of yeast actin is a Ca2+ dependent increase in critical concentration with the formation of 15-50-nm particles. Our purified actin does not have this property. By modifying the purification protocol, we can obtain a preparation having a Ca(2+)-dependent change in polymerization properties. The Ca(2+)-dependent effect results in a slower polymerization rate as well as the formation of shorter filaments. Since this effect could be mediated by a protein present at a very low stoichiometry to actin, and we do not see any contaminating peptides, we have not pursued this effect further. We suggest that the Ca(2+)-dependent properties of the Greer and Schekman preparation are most likely due to a minor contaminant.
先前已有报道称,来自酵母的肌动蛋白具有不同寻常的聚合特性。在此,我们报告一种针对肌动蛋白的简单灵敏斑点试验,并利用该试验开发出一种从酿酒酵母中高产纯化肌动蛋白的方法。纯化后的酵母肌动蛋白的聚合特性在数量上与所有其他已鉴定的肌动蛋白相似。我们已就其与酵母脯肌动蛋白和原肌球蛋白相互作用的能力对这种肌动蛋白进行了鉴定,这两种蛋白是迄今为止仅有的已纯化和鉴定的酵母肌动蛋白结合蛋白。酵母脯肌动蛋白可以隔离酵母肌动蛋白单体,从而降低酵母肌动蛋白聚合的能力,而它对兔骨骼肌肌动蛋白的聚合程度影响很小。相比之下,酵母或平滑肌原肌球蛋白与酵母或兔骨骼肌肌动蛋白的结合没有明显差异。纯化后的酵母肌动蛋白的可得性应有助于详细研究其与最近发现的酵母肌动蛋白结合蛋白的相互作用。格里尔和谢克曼(1982年)[格里尔,C. & 谢克曼,R.(1982年),《分子细胞生物学》2,1279 - 1286]报告称,酵母肌动蛋白的一个固有特性是,随着15 - 50纳米颗粒的形成,临界浓度会有Ca²⁺依赖性增加。我们纯化的肌动蛋白没有这种特性。通过修改纯化方案,我们可以获得一种聚合特性具有Ca²⁺依赖性变化的制剂。这种Ca²⁺依赖性效应导致聚合速率变慢以及形成更短的细丝。由于这种效应可能是由一种与肌动蛋白化学计量比非常低的蛋白质介导的,而且我们没有看到任何污染性肽段,所以我们没有进一步研究这种效应。我们认为,格里尔和谢克曼制剂的Ca²⁺依赖性特性很可能是由于一种微量污染物导致的。