Cohen Claire T, Chu Tony, Coates Geoffrey W
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.
J Am Chem Soc. 2005 Aug 10;127(31):10869-78. doi: 10.1021/ja051744l.
Synthetic pathways to (salcy)CoX (salcy = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-diaminocyclohexane; X = halide or carboxylate) complexes are described. Complexes (R,R)-(salcy)CoCl, (R,R)-(salcy)CoBr, (R,R)-(salcy)CoOAc, and (R,R)-(salcy)CoOBzF(5) (OBzF(5) = pentafluorobenzoate) are highly active catalysts for the living, alternating copolymerization of propylene oxide (PO) and CO(2), yielding poly(propylene carbonate) (PPC) with no detectable byproducts. The PPC generated using these catalyst systems is highly regioregular and has up to 99% carbonate linkages with a narrow molecular weight distribution (MWD). Inclusion of the cocatalysts [PPN]Cl or [PPN][OBzF(5)] ([PPN] = bis(triphenylphosphine)iminium) with complex (R,R)-(salcy)CoCl, (R,R)-(salcy)CoBr, or (R,R)-(salcy)CoOBzF(5) results in remarkable activity enhancement of the copolymerization as well as improved stereoselectivity and regioselectivity with maximized reactivity at low CO(2) pressures. In the case of [PPN]Cl with (R,R)-(salcy)CoOBzF(5), an unprecedented catalytic activity of 620 turnovers per hour is achieved for the copolymerization of rac-PO and CO(2), yielding iso-enriched PPC with 94% head-to-tail connectivity. The stereochemistry of the monomer and catalyst used in the copolymerization has dramatic effects on catalytic activity and the PPC microstructure. Using catalyst (R,R)-(salcy)CoBr with (S)-PO/CO(2) generates highly regioregular PPC, whereas using (R)-PO/CO(2) with the same catalyst gives an almost completely regiorandom copolymer. The rac-PO/CO(2) copolymerization with catalyst rac-(salcy)CoBr yields syndio-enriched PPC, an unreported PPC microstructure. In addition, (R,R)-(salcy)CoOBzF(5)/[PPN]Cl copolymerizes (S)-PO and CO(2) with a turnover frequency of 1100 h(-1), an activity surpassing that observed in any previously reported system.
本文描述了合成(salcy)CoX(salcy = N,N'-双(3,5-二叔丁基水杨基亚甲基)-1,2-二氨基环己烷;X = 卤化物或羧酸盐)配合物的途径。配合物(R,R)-(salcy)CoCl、(R,R)-(salcy)CoBr、(R,R)-(salcy)CoOAc和(R,R)-(salcy)CoOBzF₅(OBzF₅ = 五氟苯甲酸盐)是环氧丙烷(PO)和CO₂活性交替共聚的高效催化剂,生成的聚碳酸亚丙酯(PPC)无明显副产物。使用这些催化剂体系生成的PPC具有高度的区域规整性,碳酸酯键含量高达99%,分子量分布窄(MWD)。将助催化剂[PPN]Cl或[PPN][OBzF₅]([PPN] = 双(三苯基膦)亚胺鎓)与配合物(R,R)-(salcy)CoCl、(R,R)-(salcy)CoBr或(R,R)-(salcy)CoOBzF₅一起使用,可显著提高共聚活性,同时提高立体选择性和区域选择性,在低CO₂压力下反应活性最大化。对于[PPN]Cl与(R,R)-(salcy)CoOBzF₅的情况,外消旋-PO和CO₂共聚实现了前所未有的每小时620次周转的催化活性,生成了头-尾连接率为94%的富含异结构单元的PPC。共聚中使用的单体和催化剂的立体化学对催化活性和PPC微观结构有显著影响。使用催化剂(R,R)-(salcy)CoBr与(S)-PO/CO₂反应生成高度区域规整的PPC,而使用相同催化剂与(R)-PO/CO₂反应则得到几乎完全区域无规的共聚物。外消旋-PO/CO₂与催化剂外消旋-(salcy)CoBr共聚生成富含间同立构单元的PPC,这是一种未报道过的PPC微观结构。此外,(R,R)-(salcy)CoOBzF₅/[PPN]Cl使(S)-PO和CO₂共聚,周转频率为1100 h⁻¹,其活性超过了之前报道的任何体系。