Suppr超能文献

非线性估计任务中的性能度量:低信噪比下估计性能的预测

Measures of performance in nonlinear estimation tasks: prediction of estimation performance at low signal-to-noise ratio.

作者信息

Müller Stefan P, Abbey Craig K, Rybicki Frank J, Moore Stephen C, Kijewski Marie Foley

机构信息

Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Essen, Essen, Germany.

出版信息

Phys Med Biol. 2005 Aug 21;50(16):3697-715. doi: 10.1088/0031-9155/50/16/004. Epub 2005 Jul 28.

Abstract

Maximum-likelihood (ML) estimation is an established paradigm for the assessment of imaging system performance in nonlinear quantitation tasks. At high signal-to-noise ratio (SNR), ML estimates are asymptotically Gaussian-distributed, unbiased and efficient, thereby attaining the Cramer-Rao bound (CRB). Therefore, at high SNR the CRB is useful as a predictor of the variance of ML estimates and, consequently, as a basis for measures of estimation performance. At low SNR, however, the achievable parameter variances are often substantially larger than the CRB and the estimates are no longer Gaussian-distributed. These departures imply that inference about the estimates that is based on the CRB and the assumption of a normal distribution will not be valid. We have found previously that for some tasks these effects arise at noise levels considered clinically acceptable. We have derived the mathematical relationship between a new measure, chi2(pdf-ML), and the expected probability density of the ML estimates, and have justified the use of chi2(pdf-ML)-isocontours in parameter space to describe the ML estimates. We validated this approach by simulation experiments using spherical objects imaged with a Gaussian point spread function. The parameters, activity concentration and size, were estimated simultaneously by ML, and variances and covariances calculated over 1000 replications per condition from 3D image volumes and from 2D tomographic projections of the same object. At low SNR, where the CRB is no longer achievable, chi2(pdf-ML)-isocontours provide a robust prediction of the distribution of the ML estimates. At high SNR, the chi2(pdf-ML)-isocontours asymptotically approach the analogous chi2(pdf-F)-contours derived from the Fisher information matrix. The chi2(pdf-ML) model appears to be suitable for characterization of the influence of the noise level and characteristics, the task, and the object on the shape of the probability density of the ML estimates at low SNR. Furthermore, it provides unique insights into the causes of the variability of estimation performance.

摘要

最大似然(ML)估计是一种既定的范式,用于评估非线性定量任务中的成像系统性能。在高信噪比(SNR)下,ML估计渐近服从高斯分布,无偏且有效,从而达到克拉美罗界(CRB)。因此,在高SNR时,CRB可作为ML估计方差的预测器,进而作为估计性能度量的基础。然而,在低SNR时,可实现的参数方差通常远大于CRB,且估计不再服从高斯分布。这些偏差意味着基于CRB和正态分布假设对估计进行的推断将无效。我们之前发现,对于某些任务,这些影响在临床可接受的噪声水平下就会出现。我们推导了一种新度量chi2(pdf-ML)与ML估计的期望概率密度之间的数学关系,并证明了在参数空间中使用chi2(pdf-ML)等值线来描述ML估计的合理性。我们通过使用高斯点扩散函数成像的球形物体进行模拟实验验证了这种方法。通过ML同时估计参数、活度浓度和大小,并针对每个条件从3D图像体积以及同一物体的2D断层投影中进行1000次重复计算方差和协方差。在低SNR时,CRB不再可达到,chi2(pdf-ML)等值线为ML估计的分布提供了稳健的预测。在高SNR时,chi2(pdf-ML)等值线渐近逼近从费舍尔信息矩阵导出的类似chi2(pdf-F)等值线。chi2(pdf-ML)模型似乎适用于表征低SNR下噪声水平和特性、任务以及物体对ML估计概率密度形状的影响。此外,它为估计性能变异性的原因提供了独特的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验