Suppr超能文献

贝叶斯统计方法在自适应放射治疗中的应用。

An application of Bayesian statistical methods to adaptive radiotherapy.

作者信息

Lam Kwok L, Ten Haken Randall K, Litzenberg Dale, Balter James M, Pollock Stephen M

机构信息

Department of Radiation Oncology, The University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Phys Med Biol. 2005 Aug 21;50(16):3849-58. doi: 10.1088/0031-9155/50/16/013. Epub 2005 Aug 2.

Abstract

In adaptive radiotherapy, measured patient-specific setup variations are used to modify the patient setup and treatment plan, potentially many times during the treatment course. To estimate the setup adjustments and re-plan the treatment, the measured data are usually processed using Kalman filtering or by computing running averages. We propose, as an alternative, the use of Bayesian statistical methods, which combine a population (prior) distribution of systematic and random setup errors with the measurements to determine a patient-specific (posterior) probability distribution. The posterior distribution can either be used directly in the re-planning of the treatment or in the generation of statistics needed for adjustments. Based on the assumption that day-to-day setup variations are independent and identically distributed Normal distributions, we can efficiently compute parameters of the posterior distribution from parameters of the prior distribution and statistics of the measurements. We illustrate a simple procedure to apply the method in practice to adaptive radiotherapy, allowing for multiple adjustments of treatment parameters during the course of treatment.

摘要

在自适应放射治疗中,测量得到的患者特异性摆位变化用于修改患者摆位和治疗计划,在治疗过程中可能会多次进行修改。为了估计摆位调整并重新规划治疗,测量数据通常使用卡尔曼滤波或通过计算移动平均值进行处理。作为一种替代方法,我们建议使用贝叶斯统计方法,该方法将系统和随机摆位误差的总体(先验)分布与测量值相结合,以确定患者特异性(后验)概率分布。后验分布既可以直接用于治疗的重新规划,也可以用于生成调整所需的统计数据。基于日常摆位变化是独立且同分布的正态分布这一假设,我们可以从先验分布的参数和测量统计数据中高效地计算后验分布的参数。我们阐述了一种在实践中将该方法应用于自适应放射治疗的简单程序,允许在治疗过程中对治疗参数进行多次调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验