Suppr超能文献

一种用于生成大量器官几何形状数据集的方法,用于放射治疗计划研究。

A method for generating large datasets of organ geometries for radiotherapy treatment planning studies.

机构信息

Department of Radiation Oncology, Cancer Center,Research Institute of Surgery, Daping Hospital, Third Military Medical University, China ; Department of Radiation Oncology, University of California, San Diego, USA ; College of Bioengineering, Chongqing University, China.

Department of Radiation Oncology, University of California, San Diego, USA.

出版信息

Radiol Oncol. 2014 Nov 5;48(4):408-15. doi: 10.2478/raon-2014-0003. eCollection 2014 Dec.

Abstract

BACKGROUND

With the rapidly increasing application of adaptive radiotherapy, large datasets of organ geometries based on the patient's anatomy are desired to support clinical application or research work, such as image segmentation, re-planning, and organ deformation analysis. Sometimes only limited datasets are available in clinical practice. In this study, we propose a new method to generate large datasets of organ geometries to be utilized in adaptive radiotherapy.

METHODS

Given a training dataset of organ shapes derived from daily cone-beam CT, we align them into a common coordinate frame and select one of the training surfaces as reference surface. A statistical shape model of organs was constructed, based on the establishment of point correspondence between surfaces and non-uniform rational B-spline (NURBS) representation. A principal component analysis is performed on the sampled surface points to capture the major variation modes of each organ.

RESULTS

A set of principal components and their respective coefficients, which represent organ surface deformation, were obtained, and a statistical analysis of the coefficients was performed. New sets of statistically equivalent coefficients can be constructed and assigned to the principal components, resulting in a larger geometry dataset for the patient's organs.

CONCLUSIONS

These generated organ geometries are realistic and statistically representative.

摘要

背景

随着自适应放疗的应用迅速增加,需要基于患者解剖结构的大量器官几何形状数据集来支持临床应用或研究工作,例如图像分割、重新规划和器官变形分析。在临床实践中,有时仅有限的数据集可用。在这项研究中,我们提出了一种生成用于自适应放疗的大型器官几何形状数据集的新方法。

方法

给定源自日常锥形束 CT 的器官形状的训练数据集,我们将它们对齐到公共坐标系中,并选择其中一个训练表面作为参考表面。基于表面和非均匀有理 B 样条(NURBS)表示之间的点对应关系,构建了器官的统计形状模型。对采样表面点执行主成分分析,以捕获每个器官的主要变化模式。

结果

获得了代表器官表面变形的一组主成分及其各自的系数,并对系数进行了统计分析。可以构建新的一组统计等效系数并将其分配给主成分,从而为患者的器官生成更大的几何形状数据集。

结论

这些生成的器官几何形状是现实的和具有统计学代表性的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c30/4230563/1dc1298a3860/rado-48-04-408f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验