Suppr超能文献

Inhibitory effects of catechin gallates on o-methyltranslation of protocatechuic acid in rat liver cytosolic preparations and cultured hepatocytes.

作者信息

Kadowaki Masaaki, Ootani Emi, Sugihara Narumi, Furuno Koji

机构信息

Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou, Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan.

出版信息

Biol Pharm Bull. 2005 Aug;28(8):1509-13. doi: 10.1248/bpb.28.1509.

Abstract

Flavonoids including tea catechins and gallic acid esters were characterized for their ability to inhibit o-methyltranslation of protocatechuic acid (PCA) to form vanillic acid (VA) in rat liver cytosolic preparations and cultured hepatocytes. Flavonols and flavones exhibited different behaviors in inhibiting the formation of VA between the cell-free enzymatic preparations and the intact cells. The underlying mechanism of the inhibitory effects of flavonols and flavones on PCA o-methylation in cultured hepatocytes may not be due to the inhibition of the enzyme activity of catechol o-methyl transferase (COMT). Catechin gallates inhibited PCA o-methylation in liver cytosolic preparations with markedly higher potency than other flavonoids. As compared with catechin gallates, ungallated catechins had two to three orders of magnitude lower efficiency in inhibiting cytosolic PCA o-methylation. Gallic acid esters inhibited cytosolic PCA o-methylation with strong potency almost equal to that of catechin gallates. These results suggest that the COMT-inhibitory activity of catechin gallates is derived from the presence of the galloyl moiety at the C3 position in the C-ring. Catechin gallates and gallic acid esters inhibited PCA o-methylation in cultured hepatocytes with two orders of magnitude lower efficacy than that in cytosolic preparations. The inhibitory effects of catechin gallates and gallic acid esters on cellular PCA o-methylation appear to be due to the direct inhibition of COMT activity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验