Skol Andrew D, Xiao Rui, Boehnke Michael
Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109-2029, USA.
Am J Hum Genet. 2005 Sep;77(3):346-54. doi: 10.1086/432961. Epub 2005 Jul 14.
We present a simple algorithm that uses self-reported ethnicity information, pedigree structure, and affection status to group families into genetically more homogeneous subsets. This algorithm should prove useful to researchers who wish to perform genetic analyses on more-homogeneous subsets when they suspect that ignoring heterogeneity could lead to false-positive results or loss of power. We applied our algorithm to the self-reported ethnicity information of 159 families from the Veterans Affairs Cooperative Study of schizophrenia. We compared these estimates of population membership with those obtained using the program structure in an analysis of 378 microsatellite markers. We found excellent concordance between family classifications determined using self-reported ethnicity information and our algorithm and those determined using genetic marker data and structure; 158 of the 159 families had concordant classifications. In addition, the degree of admixture estimated using our algorithm and self-reported ethnicity information correlated well with that predicted using the genotype information.
我们提出了一种简单的算法,该算法利用自我报告的种族信息、谱系结构和患病状况,将家庭分组为基因上更同质的子集。对于那些怀疑忽略异质性可能导致假阳性结果或效能损失而希望在更同质的子集上进行基因分析的研究人员来说,该算法应会被证明是有用的。我们将我们的算法应用于来自退伍军人事务部精神分裂症合作研究的159个家庭的自我报告种族信息。在对378个微卫星标记的分析中,我们将这些群体成员估计值与使用程序structure获得的估计值进行了比较。我们发现,使用自我报告种族信息和我们的算法确定的家庭分类与使用基因标记数据和structure确定的家庭分类之间具有极好的一致性;159个家庭中的158个家庭具有一致的分类。此外,使用我们的算法和自我报告种族信息估计的混合程度与使用基因型信息预测的混合程度高度相关。