Wells Peter G, Bhuller Yadvinder, Chen Connie S, Jeng Winnie, Kasapinovic Sonja, Kennedy Julia C, Kim Perry M, Laposa Rebecca R, McCallum Gordon P, Nicol Christopher J, Parman Toufan, Wiley Michael J, Wong Andrea W
Faculty of Pharmacy, Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.
Toxicol Appl Pharmacol. 2005 Sep 1;207(2 Suppl):354-66. doi: 10.1016/j.taap.2005.01.061.
Developmental pathologies may result from endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS), which oxidatively damage cellular macromolecules and/or alter signal transduction. This minireview focuses upon several model drugs (phenytoin, thalidomide, methamphetamine), environmental chemicals (benzo[a]pyrene) and gamma irradiation to examine this hypothesis in vivo and in embryo culture using mouse, rat and rabbit models. Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics to free radical intermediates that initiate ROS formation, resulting in oxidation of proteins, lipids and DNA. Oxidative DNA damage and embryopathies are reduced in PHS knockout mice, and in mice treated with PHS inhibitors, antioxidative enzymes, antioxidants and free radical trapping agents. Thalidomide causes embryonic DNA oxidation in susceptible (rabbit) but not resistant (mouse) species. Embryopathies are increased in mutant mice deficient in the antioxidative enzyme glucose-6-phosphate dehydrogenase (G6PD), or by glutathione (GSH) depletion, or inhibition of GSH peroxidase or GSH reductase. Inducible nitric oxide synthase knockout mice are partially protected. Inhibition of Ras or NF-kB pathways reduces embryopathies, implicating ROS-mediated signal transduction. Atm and p53 knockout mice deficient in DNA damage response/repair are more susceptible to xenobiotic or radiation embryopathies, suggesting a teratological role for DNA damage, consistent with enhanced susceptibility to methamphetamine in ogg1 knockout mice with deficient repair of oxidative DNA damage. Even endogenous embryonic oxidative stress carries a risk, since untreated G6PD- or ATM-deficient mice have increased embryopathies. Thus, embryonic processes regulating the balance of ROS formation, oxidative DNA damage and repair, and ROS-mediated signal transduction may be important determinants of teratological risk.
发育病理学可能源于内源性或外源性物质增强的活性氧(ROS)形成,ROS会氧化损伤细胞大分子和/或改变信号转导。本综述聚焦于几种模型药物(苯妥英、沙利度胺、甲基苯丙胺)、环境化学物质(苯并[a]芘)和γ射线照射,以使用小鼠、大鼠和兔子模型在体内和胚胎培养中检验这一假设。胚胎前列腺素H合酶(PHS)和脂氧合酶将外源性物质生物激活为自由基中间体,引发ROS形成,导致蛋白质、脂质和DNA氧化。在PHS基因敲除小鼠以及用PHS抑制剂、抗氧化酶、抗氧化剂和自由基捕获剂处理的小鼠中,氧化性DNA损伤和胚胎病变减少。沙利度胺在易感(兔子)而非抗性(小鼠)物种中导致胚胎DNA氧化。在缺乏抗氧化酶葡萄糖-6-磷酸脱氢酶(G6PD)的突变小鼠中,或通过谷胱甘肽(GSH)耗竭,或抑制GSH过氧化物酶或GSH还原酶,胚胎病变会增加。诱导型一氧化氮合酶基因敲除小鼠受到部分保护。抑制Ras或NF-κB信号通路可减少胚胎病变,提示ROS介导的信号转导参与其中。缺乏DNA损伤应答/修复的Atm和p53基因敲除小鼠对外源性物质或辐射诱导的胚胎病变更易感,这表明DNA损伤具有致畸作用,这与氧化DNA损伤修复缺陷的ogg1基因敲除小鼠对甲基苯丙胺的易感性增加一致。即使是内源性胚胎氧化应激也存在风险,因为未处理的G6PD或ATM缺陷小鼠的胚胎病变增加。因此,调节ROS形成、氧化性DNA损伤与修复以及ROS介导的信号转导平衡的胚胎过程可能是致畸风险的重要决定因素。