Suppr超能文献

利用电子数据库分析多专科门诊中心就诊未成功的预测因素。

Predictors of failed attendances in a multi-specialty outpatient centre using electronic databases.

作者信息

Lee Vernon J, Earnest Arul, Chen Mark I, Krishnan Bala

机构信息

Department of Clinical Epidemiology, Tan Tock Seng Hospital, Singapore.

出版信息

BMC Health Serv Res. 2005 Aug 6;5:51. doi: 10.1186/1472-6963-5-51.

Abstract

BACKGROUND

Failure to keep outpatient medical appointments results in inefficiencies and costs. The objective of this study is to show the factors in an existing electronic database that affect failed appointments and to develop a predictive probability model to increase the effectiveness of interventions.

METHODS

A retrospective study was conducted on outpatient clinic attendances at Tan Tock Seng Hospital, Singapore from 2000 to 2004. 22864 patients were randomly sampled for analysis. The outcome measure was failed outpatient appointments according to each patient's latest appointment.

RESULTS

Failures comprised of 21% of all appointments and 39% when using the patients' latest appointment. Using odds ratios from the mutliple logistic regression analysis, age group (0.75 to 0.84 for groups above 40 years compared to below 20 years), race (1.48 for Malays, 1.61 for Indians compared to Chinese), days from scheduling to appointment (2.38 for more than 21 days compared to less than 7 days), previous failed appointments (1.79 for more than 60% failures and 4.38 for no previous appointments, compared with less than 20% failures), provision of cell phone number (0.10 for providing numbers compared to otherwise) and distance from hospital (1.14 for more than 14 km compared to less than 6 km) were significantly associated with failed appointments. The predicted probability model's diagnostic accuracy to predict failures is more than 80%.

CONCLUSION

A few key variables have shown to adequately account for and predict failed appointments using existing electronic databases. These can be used to develop integrative technological solutions in the outpatient clinic.

摘要

背景

未能按时赴门诊就诊会导致效率低下和成本增加。本研究的目的是揭示现有电子数据库中影响预约失约的因素,并建立一个预测概率模型以提高干预措施的有效性。

方法

对新加坡陈笃生医院2000年至2004年的门诊就诊情况进行回顾性研究。随机抽取22864名患者进行分析。结局指标是根据每位患者最近一次预约的门诊失约情况。

结果

失约占所有预约的21%,若以患者最近一次预约计算则占39%。使用多元逻辑回归分析的比值比,年龄组(40岁以上组与20岁以下组相比为0.75至0.84)、种族(马来人为1.48,印度人为1.61,与华人相比)、从预约安排到就诊的天数(超过21天与少于7天相比为2.38)、既往失约情况(失约率超过60%为1.79,无既往预约为4.38,与失约率低于20%相比)、是否提供手机号码(提供号码与未提供相比为0.10)以及距离医院的远近(超过14公里与少于6公里相比为1.14)与失约显著相关。预测概率模型预测失约的诊断准确性超过80%。

结论

一些关键变量已显示可充分解释并利用现有电子数据库预测预约失约情况。这些变量可用于开发门诊综合技术解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5479/1190171/4acb91a28f4a/1472-6963-5-51-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验