Abraham Getu, Kottke Claudia, Dhein Stefan, Ungemach Fritz Rupert
Institute of Pharmacology, Pharmacy and Toxicology, Leipzig University, Germany.
Pulm Pharmacol Ther. 2006;19(3):218-29. doi: 10.1016/j.pupt.2005.05.007. Epub 2005 Aug 3.
We examined the inhibitory sympathetic beta-adrenergic mechanisms in peripheral lung, bronchi and trachea of an equine model of recurrent airway obstruction (RAO), to support the hypothesis that the beta-adrenergic receptor dysfunction is not only restricted to cell surface receptor density but rather encompasses a mechanistic defect apart from the receptor, to the intracellular signaling components. The non-asthmatic lung possessed 3.2-fold more beta-adrenergic receptors than bronchi (496 +/- 19.4 vs. 155.1+/- 19.6 fmol/mg protein; P < 0.01) and 6.2-fold higher than in the trachea (79.8 +/- 12.6 fmol/mg protein; P < 0.001) (assessed by radioligand binding assays using (-)-[(125)I]-iodocyanopindolol, ICYP) and in all tissues a greater proportion of the beta(2)- than the beta(1)-subtype (75-80%). The receptor density (B(max)) in lung parenchyma and bronchial membranes was 33 and 42%, respectively, lower (P < 0.001) in RAO than in control animals, attributable to a decrease in the beta(2)-subtype. This receptor down-regulation was accompanied with an attenuated coupling efficiency of the receptor to the stimulatory G(S)-protein (P < 0.05 vs. control). Concomitantly, activation of adenylate cyclase evoked by isoproterenol was significantly reduced in lung and bronchial membranes of animals with RAO, whereas effects of 10 microM GTP, 10mM NaF, 10 microM forskolin and 10 mM Mn(2+) were not altered. There was no difference in beta-adrenergic receptor density, G(S)-protein or adenylate cyclase coupling in the trachea between asthmatic and control animals. In conclusion, in stable asthma the pulmonary beta-adrenergic receptor-G(S)-protein-adenylate cyclase system is impaired, thus the pathologic process involves all signaling components, and due to its close similarity, this animal model seems to serve as a suitable model, at least partly, of chronic asthmatic patients.
我们研究了复发性气道阻塞(RAO)马模型的外周肺、支气管和气管中的抑制性交感β-肾上腺素能机制,以支持以下假设:β-肾上腺素能受体功能障碍不仅限于细胞表面受体密度,而是除受体外还包括细胞内信号传导成分的机制缺陷。非哮喘肺的β-肾上腺素能受体比支气管多3.2倍(496±19.4对155.1±19.6 fmol/mg蛋白质;P<0.01),比气管高6.2倍(79.8±12.6 fmol/mg蛋白质;P<0.001)(通过使用(-)-[(125)I]-碘氰吲哚洛尔(ICYP)的放射性配体结合测定评估),并且在所有组织中,β(2)-亚型的比例大于β(1)-亚型(75-80%)。RAO动物肺实质和支气管膜中的受体密度(Bmax)分别比对照动物低33%和42%(P<0.001),这归因于β(2)-亚型的减少。这种受体下调伴随着受体与刺激性G(S)-蛋白的偶联效率降低(与对照相比,P<0.05)。同时,异丙肾上腺素引起的腺苷酸环化酶激活在RAO动物的肺和支气管膜中显著降低,而10μM GTP、10mM NaF、10μM福斯可林和10mM Mn(2+)的作用未改变。哮喘动物和对照动物的气管中β-肾上腺素能受体密度与G(S)-蛋白或腺苷酸环化酶偶联没有差异。总之,在稳定期哮喘中,肺β-肾上腺素能受体-G(S)-蛋白-腺苷酸环化酶系统受损,因此病理过程涉及所有信号传导成分,并且由于其高度相似性,该动物模型似乎至少部分地可作为慢性哮喘患者的合适模型。