Suppr超能文献

利用自动相关性确定模型对城市臭氧水平进行区间估计及影响因素选择。

Interval estimation of urban ozone level and selection of influential factors by employing automatic relevance determination model.

作者信息

Wang Dong, Lu Wei-Zhen

机构信息

Department of Building and Construction, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong.

出版信息

Chemosphere. 2006 Mar;62(10):1600-11. doi: 10.1016/j.chemosphere.2005.06.047. Epub 2005 Aug 9.

Abstract

In this work, we focus on simulating the ground-level ozone (O3) time series and its daily maximum concentration in Hong Kong urban air by employing the multilayer perceptron (MLP) model combined with the automatic relevance determination (ARD) method (for simplicity, we name it as MLP-ARD model). Two air quality monitoring sites in Hong Kong, i.e., Tsuen Wan and Tung Chung, are selected for the numerical experiments. The MLP-ARD model based on Bayesian evidence framework can provide reliable interval estimation of real observation as well as offering efficient strategy to avoid over-fitting. The performance comparisons between MLP-ARD model and traditional artificial neural network (ANN) model based on maximum likelihood indicate that MLP-ARD model is more powerful to capture the wild fluctuation of O3 level especially during O3 episodes than the traditional model. Furthermore, it can assess and rank the input variables for the prediction according to their relative importance to the output variable, i.e., the daily maximum O3 concentration in this study. The preliminary experimental results indicate that nitric oxide (NO) and solar radiation are the most important input variables for O3 prediction at both selected sites. In addition, the previous daily maximum O3 level is also important for Tung Chung site. In this regard, MLP-ARD model is a feasible tool to interpret the real physical and chemical process of urban O3 variation.

摘要

在这项工作中,我们专注于通过采用多层感知器(MLP)模型结合自动相关性确定(ARD)方法(为简便起见,我们将其命名为MLP-ARD模型)来模拟香港城市空气中地面臭氧(O₃)的时间序列及其日最大浓度。选择香港的两个空气质量监测站点,即荃湾和东涌,进行数值实验。基于贝叶斯证据框架的MLP-ARD模型能够提供对实际观测的可靠区间估计,同时提供有效的策略来避免过拟合。基于最大似然的MLP-ARD模型与传统人工神经网络(ANN)模型之间的性能比较表明,MLP-ARD模型在捕捉O₃水平的剧烈波动方面,尤其是在O₃事件期间,比传统模型更强大。此外,它可以根据输入变量对输出变量(即本研究中的日最大O₃浓度)的相对重要性对预测的输入变量进行评估和排序。初步实验结果表明,一氧化氮(NO)和太阳辐射是两个选定站点O₃预测中最重要的输入变量。此外,前一日的最大O₃水平对东涌站点也很重要。在这方面,MLP-ARD模型是解释城市O₃变化实际物理和化学过程的可行工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验