Horio Yoshihiko, Ikeguchi Tohru, Aihara Kazuyuki
Department of Electronic Engineering, Tokyo Denki University, 2-2 Kanda-Nishiki-cho, Chiyoda-ku, Tokyo 101-8457, Japan.
Neural Netw. 2005 Jun-Jul;18(5-6):505-13. doi: 10.1016/j.neunet.2005.06.022.
We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.
我们构建了一个用于二次分配问题(QAP)的混合模拟/数字混沌神经计算机原型系统。QAP是一类困难的NP难问题,包含多个实际应用场景。混沌神经网络已被用于通过混沌搜索动力学来解决组合优化问题,该动力学能够有效地搜索最优或近似最优解。然而,初步实验表明,尽管Hopfield型混沌神经计算机硬件系统能够获得良好的可行解,但无法得到QAP的最优解。因此,在本研究中,我们采用一种解构造方法来提高系统性能,该方法在每次迭代时利用混沌神经元的模拟内部状态值来构造一个可行解。为了将该构造方法集成到我们的硬件中,我们安装了一个多通道模数转换系统来观测混沌神经元的内部状态。我们通过实验表明,相较于原始的Hopfield型混沌神经计算机,系统性能有了显著提升。也就是说,我们在不到1000次迭代中就得到了规模为10的QAP的最优解。此外,我们根据对网络中几个混沌神经元内部状态的观测,提出了混沌神经计算机系统参数调整的指导原则。