Suppr超能文献

通过自组织神经网络的间歇性进行优化。

Optimization via intermittency with a self-organizing neural network.

作者信息

Kwok Terence, Smith Kate A

机构信息

School of Business Systems, Faculty of Information Technology, Monash University, Clayton, Victoria 3168, Australia.

出版信息

Neural Comput. 2005 Nov;17(11):2454-81. doi: 10.1162/0899766054796860.

Abstract

One of the major obstacles in using neural networks to solve combinatorial optimization problems is the convergence toward one of the many local minima instead of the global minima. In this letter, we propose a technique that enables a self-organizing neural network to escape from local minima by virtue of the intermittency phenomenon. It gives rise to novel search dynamics that allow the system to visit multiple global minima as meta-stable states. Numerical experiments performed suggest that the phenomenon is a combined effect of Kohonen-type competitive learning and the iterated softmax function operating near bifurcation. The resultant intermittent search exhibits fractal characteristics when the optimization performance is at its peak in the form of 1/f signals in the time evolution of the cost, as well as power law distributions in the meta-stable solution states. TheN-Queens problem is used as an example to illustrate the meta-stable convergence process that sequentially generates, in a single run, 92 solutions to the 8-Queens problem and 4024 solutions to the 17-Queens problem.

摘要

使用神经网络解决组合优化问题的主要障碍之一是趋向于众多局部最小值之一而非全局最小值。在本信函中,我们提出了一种技术,该技术能使自组织神经网络借助间歇性现象逃离局部最小值。它产生了新颖的搜索动态,使系统能够将多个全局最小值作为亚稳态进行访问。所进行的数值实验表明,该现象是Kohonen型竞争学习和在分岔附近运行的迭代softmax函数的综合效应。当优化性能处于峰值时,所得的间歇性搜索在成本的时间演化中以1/f信号的形式呈现分形特征,并且在亚稳态解状态中呈现幂律分布。以N皇后问题为例来说明亚稳态收敛过程,该过程在单次运行中依次生成8皇后问题的92个解和17皇后问题的4024个解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验