Suppr超能文献

粘性细丝的形状与稳定性

Shape and stability of a viscous thread.

作者信息

Senchenko Sergey, Bohr Tomas

机构信息

Physics Department, Danish Technical University, DK-2800 Lyngby, Denmark.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056301. doi: 10.1103/PhysRevE.71.056301. Epub 2005 May 3.

Abstract

When a viscous fluid, like oil or syrup, streams from a small orifice and falls freely under gravity, it forms a long slender thread, which can be maintained in a stable, stationary state with lengths up to several meters. We discuss the shape of such liquid threads and their surprising stability. The stationary shapes are discussed within the long-wavelength approximation and compared to experiments. It turns out that the strong advection of the falling fluid can almost outrun the Rayleigh-Plateau instability. The asymptotic shape and stability are independent of viscosity and small perturbations grow with time as exp (C t(1/4)), where the constant is independent of viscosity. The corresponding spatial growth has the form exp [(z/L)(1/8)], where z is the down stream distance and L approximately Q(2) sigma(-2) g and where sigma is the surface tension divided by density, g is the gravity, and Q is the flux. We also show that a slow spatial increase of the gravitational field can make the thread stable.

摘要

当粘性流体,如油或糖浆,从小孔流出并在重力作用下自由下落时,会形成一条细长的线,其长度可达数米且能保持稳定的静止状态。我们讨论此类液线的形状及其惊人的稳定性。在长波长近似下讨论静止形状并与实验进行比较。结果表明,下落流体的强烈平流几乎能超过瑞利 - 普拉托不稳定性。渐近形状和稳定性与粘度无关,小扰动随时间以exp (C t(1/4))的形式增长,其中常数与粘度无关。相应的空间增长形式为exp [(z/L)(1/8)],其中z是下游距离,L近似为Q(2) sigma(-2) g,其中sigma是表面张力除以密度,g是重力,Q是通量。我们还表明,重力场的缓慢空间增加可使液线稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验