Suppr超能文献

有偏随机可满足性问题:从简单实例到困难实例

Biased random satisfiability problems: from easy to hard instances.

作者信息

Ramezanpour A, Moghimi-Araghi S

机构信息

Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159, Iran.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):066101. doi: 10.1103/PhysRevE.71.066101. Epub 2005 Jun 1.

Abstract

In this paper we study biased random K -satisfiability ( K -SAT) problems in which each logical variable is negated with probability p . This generalization provides us a crossover from easy to hard problems and would help us in a better understanding of the typical complexity of random K -SAT problems. The exact solution of 1-SAT case is given. The critical point of K -SAT problems and results of replica method are derived in the replica symmetry framework. It is found that in this approximation alpha(c) proportional p(-(K-1)) for p --> 0. Solving numerically the survey propagation equations for K = 3 we find that for p < p* approximately 0.17 there is no replica symmetry breaking and still the SAT-UNSAT transition is discontinuous.

摘要

在本文中,我们研究了有偏随机K可满足性(K - SAT)问题,其中每个逻辑变量以概率p被取反。这种推广为我们提供了从简单问题到困难问题的交叉,并有助于我们更好地理解随机K - SAT问题的典型复杂性。给出了1 - SAT情况的精确解。在复制对称框架下推导了K - SAT问题的临界点和复制方法的结果。发现在此近似中,当p趋于0时,α(c) 与p^(-(K - 1)) 成正比。通过数值求解K = 3时的调查传播方程,我们发现当p < p*(约为0.17)时,不存在复制对称破缺,并且SAT - UNSAT转变仍然是不连续的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验