Suppr超能文献

树上的平衡K可满足性和有偏随机K可满足性

Balanced K-satisfiability and biased random K-satisfiability on trees.

作者信息

Krishnamurthy Supriya, Sahoo Sharmistha

机构信息

National Institute of Science Education and Research, Institute of Physics Campus, Bhubaneswar, Orissa-751 005, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042130. doi: 10.1103/PhysRevE.87.042130.

Abstract

We study and solve some variations of the random K-satisfiability (K-SAT) problem—balanced K-SAT and biased random K-SAT—on a regular tree, using techniques we have developed earlier. In both these problems as well as variations of these that we have looked at, we find that the transition from the satisfiable to the unsatisfiable regime obtained on the Bethe lattice matches the exact threshold for the same model on a random graph for K = 2 and is very close to the numerical value obtained for K = 3. For higher K, it deviates from the numerical estimates of the solvability threshold on random graphs but is very close to the dynamical one-step-replicasymmetry-breaking threshold as obtained from the first nontrivial fixed point of the survey propagation algorithm.

摘要

我们运用先前开发的技术,研究并解决了正则树上随机K可满足性(K-SAT)问题的一些变体——平衡K-SAT和有偏随机K-SAT。在这两个问题以及我们研究过的它们的变体中,我们发现,在贝叶斯晶格上从可满足状态到不可满足状态的转变,与随机图上相同模型在K = 2时的精确阈值相匹配,并且非常接近K = 3时获得的数值。对于更高的K值,它偏离了随机图上可解性阈值的数值估计,但非常接近从调查传播算法的第一个非平凡不动点获得的动态一步复制对称破缺阈值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验