Cuevas Jesús, Malomed Boris A, Kevrekidis P G
Grupo de Física No Lineal, Departamento de Física Aplicada I, Escuela Universitaria Politécnica, C/ Virgen de Africa, 7, 41011 Sevilla, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):066614. doi: 10.1103/PhysRevE.71.066614. Epub 2005 Jun 29.
We demonstrate that time-periodic modulation of the nonlinearity coefficient in the discrete nonlinear Schrödinger equation strongly facilitates creation of traveling solitons in the lattice. We predict this possibility in a semi-qualitative form analytically, and test it in direct numerical simulations. Systematic computations reveal several generic dynamical regimes, depending on the amplitude and frequency of the time modulation, and on the initial thrust which sets the soliton in motion. These regimes include irregular motion of the soliton, regular motion of a decaying one, and regular motion of a stable soliton. The motion may occur in both the straight and reverse directions, relative to the initial thrust. In the case of stable motion, extremely long simulations in a lattice with periodic boundary conditions demonstrate that the soliton keeps moving indefinitely long without any visible loss. Velocities of moving stable solitons are in good agreement with the analytical prediction, which is based on requiring a resonance between the ac drive and motion of the soliton through the periodic lattice. The generic dynamical regimes are mapped in the model's parameter space. Collisions between moving stable solitons are briefly investigated too, with a conclusion that two different outcomes are possible: elastic bounce, or bounce with mass transfer from one soliton to the other. The model can be realized experimentally in a Bose-Einstein condensate trapped in a deep optical lattice.
我们证明,离散非线性薛定谔方程中非线性系数的时间周期调制极大地促进了晶格中传播孤子的产生。我们以半定性形式通过解析方法预测了这种可能性,并在直接数值模拟中对其进行了检验。系统计算揭示了几种一般的动力学状态,这取决于时间调制的幅度和频率,以及使孤子运动的初始推力。这些状态包括孤子的不规则运动、衰减孤子的规则运动以及稳定孤子的规则运动。相对于初始推力,运动可能沿直线方向和反向发生。在稳定运动的情况下,在具有周期性边界条件的晶格中进行的极长时间模拟表明,孤子可以无限期地持续运动而没有任何明显损耗。运动稳定孤子的速度与基于要求交流驱动与孤子通过周期性晶格的运动之间产生共振的解析预测高度吻合。一般的动力学状态被映射到模型的参数空间中。我们还简要研究了运动稳定孤子之间的碰撞,得出的结论是可能有两种不同的结果:弹性反弹,或伴随着质量从一个孤子转移到另一个孤子的反弹。该模型可以在捕获于深光学晶格中的玻色 - 爱因斯坦凝聚体中通过实验实现。