Oxtoby O F, Barashenkov I V
Department of Maths and Applied Maths, University of Cape Town, Rondebosch 7701, South Africa.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 2):036603. doi: 10.1103/PhysRevE.76.036603. Epub 2007 Sep 13.
Using the method of asymptotics beyond all orders, we evaluate the amplitude of radiation from a moving small-amplitude soliton in the discrete nonlinear Schrödinger equation. When the nonlinearity is of the cubic type, this amplitude is shown to be nonzero for all velocities and therefore small-amplitude solitons moving without emitting radiation do not exist. In the case of a saturable nonlinearity, on the other hand, the radiation is found to be completely suppressed when the soliton moves at one of certain isolated "sliding velocities." We show that a discrete soliton moving at a general speed will experience radiative deceleration until it either stops and remains pinned to the lattice or--in the saturable case--locks, metastably, onto one of the sliding velocities. When the soliton's amplitude is small, however, this deceleration is extremely slow; hence, despite losing energy to radiation, the discrete soliton may spend an exponentially long time traveling with virtually unchanged amplitude and speed.
运用超越所有阶次的渐近方法,我们评估了离散非线性薛定谔方程中运动的小振幅孤子的辐射振幅。当非线性为立方型时,该振幅对于所有速度均非零,因此不存在不发射辐射而运动的小振幅孤子。另一方面,在可饱和非线性的情况下,当孤子以某些特定的孤立“滑动速度”之一运动时,辐射被发现完全被抑制。我们表明,以一般速度运动的离散孤子将经历辐射减速,直到它要么停止并固定在晶格上,要么——在可饱和情况下——亚稳态地锁定在其中一个滑动速度上。然而,当孤子的振幅很小时,这种减速极其缓慢;因此,尽管因辐射而损失能量,但离散孤子可能会以几乎不变的振幅和速度花费指数级长的时间行进。