Fa Kwok Sau, Lenzi E K
Departamento de Física, Universidade Estadual de Maringá, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011107. doi: 10.1103/PhysRevE.72.011107. Epub 2005 Jul 18.
We consider the time-fractional diffusion equation with time dependent diffusion coefficient given by (O)O(alpha)(C)(t) W (x,t) = D(alpha,gamma)(t)(gamma) [theta(2) W (x,t) /theta x(2)], where O is the Caputo operator. We investigate its solutions in the infinite and the finite domains. The mean squared displacement and the mean first passage time are also considered. In particular, for alpha = 0 , the mean squared displacement is given by <x(2)> approximately t(gamma) and we verify that the mean first passage time is finite for superdiffusive regimes.
我们考虑具有时间依赖扩散系数的时间分数阶扩散方程,其形式为:(O)O(α)(C)(t)W(x,t)= D(α,γ)(t)(γ)[θ²W(x,t)/θx²],其中O为卡普托算子。我们研究其在无限域和有限域中的解。还考虑了均方位移和平均首次通过时间。特别地,当α = 0时,均方位移由<x²>≈t(γ)给出,并且我们验证了在超扩散区域平均首次通过时间是有限的。