Suppr超能文献

从具有俘获或复合的实验系统角度对具有非守恒概率密度的分数扩散方程的解释。

Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination.

作者信息

Bisquert Juan

机构信息

Departament de Ciències Experimentals, Universitat Jaume I, Castellã, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011109. doi: 10.1103/PhysRevE.72.011109. Epub 2005 Jul 22.

Abstract

The fractional diffusion equation that is constructed replacing the time derivative with a fractional derivative, (0)D(alpha)(t) f = C(alpha) theta(2) f/theta x(2), where (0)D(alpha)(t) is the Riemann-Liouville derivative operator, is characterized by a probability density that decays with time as t(alpha -1) (alpha < 1) and an initial condition that diverges as t -->0 [R. Hilfer, J. Phys. Chem. B 104, 3914 (2000)]. These seemingly unphysical features have obstructed the application of the fractional diffusion equation. The paper clarifies the meaning of these properties adopting concrete physical interpretations of experimentally verified models: the decay of free-carrier density in a semiconductor with an exponential distribution of traps, and the decay of ion-recombination isothermal luminescence. We conclude that the fractional diffusion equation is a suitable representation of diffusion in disordered media with dissipative processes such as trapping or recombination involving an initial exponential distribution either in the energy or spatial axis. The fractional decay does not consider explicitly the starting excitation and ultrashort time-scale relaxation that forms the initial exponential distribution, and therefore it cannot be extrapolated to t = 0.

摘要

通过用分数阶导数代替时间导数构建的分数阶扩散方程,即(0)D(α)(t)f = C(α)∂²f/∂x²,其中(0)D(α)(t)是黎曼 - 刘维尔导数算子,其特征在于概率密度随时间按t^(α - 1)衰减(α < 1)且初始条件在t→0时发散[R. 希尔弗,《物理化学杂志B》104, 3914 (2000)]。这些看似不符合物理实际的特征阻碍了分数阶扩散方程的应用。本文通过对经过实验验证的模型采用具体的物理解释来阐明这些性质的含义:具有陷阱指数分布的半导体中自由载流子密度的衰减,以及离子复合等温发光的衰减。我们得出结论,分数阶扩散方程是无序介质中扩散的一种合适表示,其中存在诸如俘获或复合等耗散过程,这些过程在能量或空间轴上涉及初始指数分布。分数阶衰减没有明确考虑形成初始指数分布的起始激发和超短时间尺度弛豫,因此不能外推到t = 0。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验