Suppr超能文献

Fractal dimension and unscreened angles measured for radial viscous fingering.

作者信息

Praud Olivier, Swinney Harry L

机构信息

Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, 78712, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011406. doi: 10.1103/PhysRevE.72.011406. Epub 2005 Jul 21.

Abstract

We have examined fractal patterns formed by the injection of air into oil in a thin (0.127 mm) layer contained between two cylindrical glass plates of 288 mm diameter (a Hele-Shaw cell), for pressure differences in the range 0.25 < or = DeltaP < or = 1.75 atm. We find that an asymptotic structure is reached at large values of the ratio r/b, where r is the pattern radius and b the gap between the plates. Both the driving force and the size of the pattern, which reaches r/b = 900, are far larger than in past experiments. The fractal dimension D0 of the pattern for large r/b is 1.70 +/- 0.02. Further, the generalized dimensions D(q) of the pattern are independent of q , D(q) approximately 1.70 for the range examined, -11 < q < 17; thus the pattern is self-similar within the experimental uncertainty. The results for D(q) agree well with recent calculations for diffusion-limited aggregation (DLA) clusters. We have also measured the probability distribution of unscreened angles. At late times, the distribution approaches a universal (i.e., forcing and size-independent) asymptotic form that has mean 145 degrees Celsius and standard deviation 36 degrees Celsius. These results indicate that the distribution function for the unscreened angle is an invariant property of the growth process.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验