Fantoni Riccardo, Gazzillo Domenico, Giacometti Achille
Istituto Nazionale per la Fisica della Materia and Dipartimento di Chimica Fisica, Università di Venezia, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011503. doi: 10.1103/PhysRevE.72.011503. Epub 2005 Jul 19.
The thermodynamic instabilities of a binary mixture of sticky hard spheres (SHS) in the modified mean spherical approximation (mMSA) and the Percus-Yevick (PY) approximation are investigated using an approach devised by Chen and Forstmann [corrected] [J. Chem. Phys. [corrected] 97, 3696 (1992)]. This scheme hinges on a diagonalization of the matrix of second functional derivatives of the grand canonical potential with respect to the particle density fluctuations. The zeroes of the smallest eigenvalue and the direction of the relative eigenvector characterize the instability uniquely. We explicitly compute three different classes of examples. For a symmetrical binary mixture, analytical calculations, both for mMSA and for PY, predict that when the strength of adhesiveness between like particles is smaller than the one between unlike particles, only a pure condensation spinodal exists; in the opposite regime, a pure demixing spinodal appears at high densities. We then compare the mMSA and PY results for a mixture where like particles interact as hard spheres (HS) and unlike particles as SHS, and for a mixture of HS in a SHS fluid. In these cases, even though the mMSA and PY spinodals are quantitatively and qualitatively very different from each other, we prove that they have the same kind of instabilities. Finally, we study the mMSA solution for five different mixtures obtained by setting the stickiness parameters equal to five different functions of the hard sphere diameters. We find that four of the five mixtures exhibit very different type of instabilities. Our results are expected to provide a further step toward a more thoughtful application of SHS models to colloidal fluids.
采用陈和福斯特曼[校正][《化学物理杂志》[校正]97, 3696 (1992)]设计的方法,研究了在修正平均球近似(mMSA)和珀库斯 - 耶维克(PY)近似下粘性硬球(SHS)二元混合物的热力学不稳定性。该方案取决于巨正则势关于粒子密度涨落的二阶泛函导数矩阵的对角化。最小本征值的零点和相对本征向量的方向唯一地表征了不稳定性。我们明确计算了三类不同的例子。对于对称二元混合物,mMSA和PY的解析计算都预测,当同类粒子间的粘附强度小于异类粒子间的粘附强度时,仅存在纯凝聚旋节线;在相反的情况下,在高密度时会出现纯混合旋节线。然后,我们比较了同类粒子按硬球(HS)相互作用而异类粒子按SHS相互作用的混合物,以及HS在SHS流体中的混合物的mMSA和PY结果。在这些情况下,尽管mMSA和PY旋节线在定量和定性上彼此非常不同,但我们证明它们具有相同类型的不稳定性。最后,我们研究了通过将粘性参数设置为硬球直径的五个不同函数而得到的五种不同混合物的mMSA解。我们发现五种混合物中有四种表现出非常不同类型的不稳定性。我们的结果有望为更深入地将SHS模型应用于胶体流体迈出进一步的一步。