Ruppeiner George
Division of Natural Sciences, New College of Florida, 5700 North Tamiami Trail, Sarasota, Florida 34243, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 2):016120. doi: 10.1103/PhysRevE.72.016120. Epub 2005 Jul 19.
A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 3<alpha<3.7913 , the solution goes from the low to the expected high density limit smoothly; (6) for alpha>3.7913 a phase transition is required to go between these regimes; (7) for any alpha>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if alpha-->infinity, the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.
一种基于曲率标量R与自由能密度的倒数成正比这一假设的热力学黎曼几何理论,被用于研究由相同经典点粒子组成的三维流体系统,这些粒子通过幂律势能γr^(-α)相互作用。此类系统在模拟熔化转变中很有用。α趋于无穷大的极限对应于硬球气体。仅对于短程(α>3)和排斥(γ>0)相互作用存在热力学极限。对于给定的α>3、γ>0和任何恒定温度T,几何理论解具有以下性质:(1)热力学由单个函数b(ρT^(-3/α))得出,其中ρ是密度;(2)所有解在ρT^(-3/α)的单个缩放常数范围内是等效的,该常数通过维里定理与γ相关;(3)在低密度下,解对应于理想气体;(4)在高密度下,存在压力和能量取决于密度的解,这与固态物理学预期的一致,尽管没有杜隆 - 珀蒂热容量极限;(5)对于3<α<3.7913,解从低到预期的高密度极限平滑过渡;(6)对于α>3.7913,需要一个相变才能在这些区域之间转换;(7)对于任何α>3,我们可以包括一个一级相变,这是计算机模拟所预期的;(8)如果α趋于无穷大,随着压力增加到无穷大,密度趋近于一个有限值,压力在密度差中呈对数发散。