Technical University of Cologne, 50678 Köln, Germany.
Thermodynamics and Energy Technology, University of Paderborn, 33098 Paderborn, Germany.
Phys Rev E. 2018 May;97(5-1):052149. doi: 10.1103/PhysRevE.97.052149.
Aspects of isomorph theory, Rosenfeld-Tarazona temperature scaling, and thermodynamic geometry are comparatively discussed on the basis of the Lennard-Jones potential. The first two approaches approximate the high-density fluid state well when the repulsive interparticle interactions become dominant, which is typically the case close to the freezing line. However, previous studies of Rosenfeld-Tarazona scaling for the isochoric heat capacity and its relation to isomorph theory reveal deviations for the temperature dependence. It turns out that a definition of a state region in which repulsive interactions dominate is required for achieving consistent results. The Riemannian thermodynamic scalar curvature R allows for such a classification, indicating predominantly repulsive interactions by R>0. An analysis of the isomorphic character of the freezing line and the validity of Rosenfeld-Tarazona temperature scaling show that these approaches are consistent only in a small state region.
在伦纳德-琼斯势的基础上,比较讨论了同构理论、罗森菲尔德-塔拉萨诺温度标度和热力学几何的各个方面。前两种方法在排斥相互作用占主导地位时,很好地逼近了高密度流体状态,这种情况通常接近冻结线。然而,以前对等容热容的罗森菲尔德-塔拉萨诺标度及其与同构理论的关系的研究表明,温度依赖性存在偏差。事实证明,需要定义一个以排斥相互作用为主导的状态区域,才能得到一致的结果。黎曼热力学标量曲率 R 允许这样的分类,表明 R>0 表示主要的排斥相互作用。对冻结线的同构特征和罗森菲尔德-塔拉萨诺温度标度的有效性的分析表明,这些方法仅在一个小的状态区域内是一致的。