Berg Bernd A, Zhou Huan-Xiang
Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 2):016712. doi: 10.1103/PhysRevE.72.016712. Epub 2005 Jul 21.
The rugged Metropolis (RM) algorithm is a biased updating scheme which aims at directly hitting the most likely configurations in a rugged free-energy landscape. Details of the one-variable ( RM1 ) implementation of this algorithm are presented. This is followed by an extension to simultaneous updating of two dynamical variables ( RM2 ). In a test with the brain peptide Met-Enkephalin in vacuum RM2 improves conventional Metropolis simulations by a factor of about 4. Correlations between three or more dihedral angles appear to prevent larger improvements at low temperatures. We also investigate a multihit Metropolis scheme, which spends more CPU time on variables with large autocorrelation times.
崎岖 metropolis(RM)算法是一种有偏更新方案,旨在直接命中崎岖自由能景观中最可能的构型。本文给出了该算法单变量(RM1)实现的细节。随后将其扩展到两个动力学变量的同时更新(RM2)。在真空中对脑肽甲硫氨酸脑啡肽进行的测试中,RM2将传统的 metropolis 模拟提高了约4倍。三个或更多二面角之间的相关性似乎阻碍了在低温下实现更大的改进。我们还研究了一种多命中 metropolis 方案,该方案在具有大自相关时间的变量上花费更多的CPU时间。