Parthasarathy Raghuveer, Cripe Paul A, Groves Jay T
Department of Chemistry, University of California, Berkeley, 94720, USA.
Phys Rev Lett. 2005 Jul 22;95(4):048101. doi: 10.1103/PhysRevLett.95.048101.
To explore the physical mechanisms that can guide spatial organization at biological membranes, we have constructed simple, cell-free intermembrane junctions. We find that the mechanically driven patterning of proteins uncovered in our earlier work can electrostatically generate spatial patterns in the distribution of charged membrane lipids. Tuning the magnitude of the interaction as a function of composition and ionic strength, and analyzing the interplay between thermodynamics and electrostatics via a Poisson-Boltzmann approach, we are able to determine the charge density and surface potential of the junction components. Surprisingly, the electrostatic potential of the proteins is a minor factor in the lipid reorganization; the protein size and its modulation of the junction topography play the dominant role in driving the electrostatic patterns.
为了探索能够引导生物膜空间组织的物理机制,我们构建了简单的无细胞膜间连接。我们发现,我们早期工作中揭示的由机械驱动的蛋白质图案化能够通过静电作用在带电荷的膜脂分布中产生空间图案。通过调整相互作用强度作为组成和离子强度的函数,并通过泊松-玻尔兹曼方法分析热力学和静电学之间的相互作用,我们能够确定连接组件的电荷密度和表面电势。令人惊讶的是,蛋白质的静电势在脂质重组中是一个次要因素;蛋白质大小及其对连接形貌的调节在驱动静电图案方面起主导作用。