Suppr超能文献

内在膜动力学对具有不规则神经元放电的快速网络振荡的贡献。

Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.

作者信息

Geisler Caroline, Brunel Nicolas, Wang Xiao-Jing

机构信息

Physics Department, Brandeis University, Waltham, MA 02454, USA.

出版信息

J Neurophysiol. 2005 Dec;94(6):4344-61. doi: 10.1152/jn.00510.2004. Epub 2005 Aug 10.

Abstract

During fast oscillations in the local field potential (40-100 Hz gamma, 100-200 Hz sharp-wave ripples) single cortical neurons typically fire irregularly at rates that are much lower than the oscillation frequency. Recent computational studies have provided a mathematical description of such fast oscillations, using the leaky integrate-and-fire (LIF) neuron model. Here, we extend this theoretical framework to populations of more realistic Hodgkin-Huxley-type conductance-based neurons. In a noisy network of GABAergic neurons that are connected randomly and sparsely by chemical synapses, coherent oscillations emerge with a frequency that depends sensitively on the single cell's membrane dynamics. The population frequency can be predicted analytically from the synaptic time constants and the preferred phase of discharge during the oscillatory cycle of a single cell subjected to noisy sinusoidal input. The latter depends significantly on the single cell's membrane properties and can be understood in the context of the simplified exponential integrate-and-fire (EIF) neuron. We find that 200-Hz oscillations can be generated, provided the effective input conductance of single cells is large, so that the single neuron's phase shift is sufficiently small. In a two-population network of excitatory pyramidal cells and inhibitory neurons, recurrent excitation can either decrease or increase the population rhythmic frequency, depending on whether in a neuron the excitatory synaptic current follows or precedes the inhibitory synaptic current in an oscillatory cycle. Detailed single-cell properties have a substantial impact on population oscillations, even though rhythmicity does not originate from pacemaker neurons and is an emergent network phenomenon.

摘要

在局部场电位的快速振荡期间(40 - 100赫兹的伽马振荡,100 - 200赫兹的尖波涟漪),单个皮层神经元通常以远低于振荡频率的速率不规则地放电。最近的计算研究使用泄漏积分发放(LIF)神经元模型对这种快速振荡进行了数学描述。在此,我们将这个理论框架扩展到更现实的基于霍奇金 - 赫胥黎型电导的神经元群体。在一个由化学突触随机且稀疏连接的GABA能神经元的噪声网络中,会出现相干振荡,其频率敏感地取决于单个细胞的膜动力学。群体频率可以根据突触时间常数以及在受到噪声正弦输入的单个细胞振荡周期内的偏好放电相位进行解析预测。后者显著取决于单个细胞的膜特性,并且可以在简化的指数积分发放(EIF)神经元的背景下理解。我们发现,只要单个细胞的有效输入电导足够大,使得单个神经元的相移足够小,就可以产生200赫兹的振荡。在一个由兴奋性锥体细胞和抑制性神经元组成的双群体网络中,反复激发可以增加或降低群体节律频率,这取决于在一个神经元中,兴奋性突触电流在振荡周期中是跟随还是先于抑制性突触电流。详细的单细胞特性对群体振荡有重大影响,尽管节律性并非源自起搏器神经元,而是一种涌现的网络现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验