Vitte C, Panaud O
Laboratoire Ecologie, Systématique et Evolution, Université Paris-Sud, Orsay, France.
Cytogenet Genome Res. 2005;110(1-4):91-107. doi: 10.1159/000084941.
Long Terminal Repeat (LTR) retrotransposons are ubiquitous components of plant genomes. Because of their copy-and-paste mode of transposition, these elements tend to increase their copy number while they are active. In addition, it is now well established that the differences in genome size observed in the plant kingdom are accompanied by variations in LTR retrotransposon content, suggesting that LTR retrotransposons might be important players in the evolution of plant genome size, along with polyploidy. The recent availability of large genomic sequences for many crop species has made it possible to examine in detail how LTR retrotransposons actually drive genomic changes in plants. In the present paper, we provide a review of the recent publications that have contributed to the knowledge of plant LTR retrotransposons, as structural components of the genomes, as well as from an evolutionary genomic perspective. These studies have shown that plant genomes undergo genome size increases through bursts of retrotransposition, while there is a counteracting process that tends to eliminate the transposed copies from the genomes. This process involves recombination mechanisms that occur either between the LTRs of the elements, leading to the formation of solo-LTRs, or between direct repeats anywhere in the sequence of the element, leading to internal deletions. All these studies have led to the emergence of a new model for plant genome evolution that takes into account both genome size increases (through retrotransposition) and decreases (through solo-LTR and deletion formation). In the conclusion, we discuss this new model and present the future prospects in the study of plant genome evolution in relation to the activity of transposable elements.
长末端重复序列(LTR)逆转座子是植物基因组中普遍存在的组成部分。由于其复制粘贴式的转座模式,这些元件在活跃时往往会增加其拷贝数。此外,现在已经明确,在植物界观察到的基因组大小差异伴随着LTR逆转座子含量的变化,这表明LTR逆转座子可能与多倍体一起,在植物基因组大小的进化中发挥重要作用。最近许多作物物种的大型基因组序列的可得性,使得详细研究LTR逆转座子如何实际驱动植物基因组变化成为可能。在本文中,我们综述了最近的一些出版物,这些出版物从基因组的结构组成以及进化基因组学的角度,为植物LTR逆转座子的知识做出了贡献。这些研究表明,植物基因组通过逆转座爆发实现基因组大小增加,同时存在一个抵消过程,倾向于从基因组中消除转座后的拷贝。这个过程涉及到元件LTR之间发生的重组机制,导致单LTR的形成,或者元件序列中任何位置的直接重复之间发生的重组机制,导致内部缺失。所有这些研究都促成了一个新的植物基因组进化模型的出现,该模型同时考虑了基因组大小的增加(通过逆转座)和减少(通过单LTR和缺失形成)。在结论部分,我们讨论了这个新模型,并提出了与转座元件活性相关的植物基因组进化研究的未来前景。