Steinemann S, Steinemann M
Institut für Molekulargenetik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
Cytogenet Genome Res. 2005;110(1-4):134-43. doi: 10.1159/000084945.
Many eukaryotic taxa inherit a heteromorphic sex chromosome pair. It is a generally accepted hypothesis that the sex chromosome pair is derived from a pair of homologous autosomes that has developed after the occurrence of a sex differentiator in an evolutionary process into two structurally and functionally different partners. In most of the analyzed systems the occurrence of the dominant sex differentiator is paralleled by the suppression of recombination within and close by that region. The recombinational isolation can spread in an evolutionary selection process from neighboring regions finally over the whole chromosome. Suppression of recombination strongly biases the distribution of retrotransposons in the genome. Our results and that from others indicate that the major force driving the evolution of Y chromosomes are retrotransposons, remodeling euchromatic chromosome structures into heterochromatic ones. In our model, intact or already eroded retrotransposons become trapped due to their inherent transposition mechanisms in non-recombining regions. The massive accumulation of retrotransposons interferes strongly with the activity of genes. We hypothesize that Y chromosome degeneration is a stepwise evolutionary process: (1) Massive accumulation of retrotransposons occurs in the non-recombining regions. (2) Heterochromatic nucleation centers are formed as a consequence of genomic defense against invasive parasitic elements; the established nucleation centers become epigenetically inherited. (3) Spreading of heterochromatin from the nucleation centers into flanking regions induces in an adaptive process gene silencing of neighbored genes that could either be still intact or in an already eroded condition, e.g., showing point mutations, deletions, insertions; the retroelements should be subjects to the same forces of deterioration as the genes themselves. (4) Constitutive silenced genes are not committed to the same genetic selection pressure as active genes and therefore more exposed to the decay process. (5) Gene dosage balance is reestablished by the parallel evolution of dosage compensation mechanisms. The evolving secondary sex chromosomes, neo-X and neo-Y, of Drosophila miranda are revealed to be a unique and potent model system to catch the evolutionary Y deterioration process in progress.
许多真核生物类群继承了一对异型性染色体。一个被广泛接受的假说是,性染色体对源自一对同源常染色体,在进化过程中,随着性别分化因子的出现,这对常染色体逐渐演变成两个结构和功能不同的伙伴。在大多数分析的系统中,显性性别分化因子的出现伴随着该区域内及附近重组的抑制。重组隔离可以在进化选择过程中从邻近区域扩散,最终覆盖整个染色体。重组抑制强烈影响反转录转座子在基因组中的分布。我们的结果以及其他人的结果表明,驱动Y染色体进化的主要力量是反转录转座子,它们将常染色质染色体结构重塑为异染色质结构。在我们的模型中,完整的或已经被侵蚀的反转录转座子由于其固有的转座机制而被困在非重组区域。反转录转座子的大量积累强烈干扰基因的活性。我们假设Y染色体退化是一个逐步的进化过程:(1)反转录转座子在非重组区域大量积累。(2)由于基因组对入侵寄生元件的防御,形成了异染色质成核中心;已建立的成核中心通过表观遗传方式遗传。(3)异染色质从成核中心向侧翼区域扩散,在一个适应性过程中诱导邻近基因的基因沉默,这些基因可能仍然完整,也可能已经被侵蚀,例如,表现出点突变、缺失、插入;反转录元件应该受到与基因本身相同的退化力量的影响。(4)组成型沉默基因不像活性基因那样受到相同的遗传选择压力,因此更容易受到衰变过程的影响。(5)通过剂量补偿机制的平行进化重新建立基因剂量平衡。果蝇米兰达正在进化的次生性别染色体,新X和新Y,被证明是捕捉正在进行的进化Y退化过程的独特而有力的模型系统。