Danks Timothy N, Wagner Gabriele
Chemistry Division, SBMS, University of Surrey, Guildford, Surrey, UK GU2 7XH.
Dalton Trans. 2005 Sep 7(17):2933-40. doi: 10.1039/b501554e. Epub 2005 Jul 15.
DFT calculations (B3LYP/LANL2DZ/6-31 G*) were used to investigate the ways in which 1-methyl-4-phenyl-1-azabuta-1,3-diene and 4-phenyl-1-oxabuta-1,3-diene bind to a Fe(CO)(4) moiety. As possible coordination modes, eta(2)-coordination across the C=C or C=N/C=O bond, sigma-coordination to the lone pair of the heteroatom, or eta(3)-coordination through the C=C-C or the N=C-C/O=C-C moiety were considered. The latter forms involve coupling of the non-coordinated atom of the heterodiene with one of the carbonyl ligands to an acyl species. The calculated geometric parameters of all structures compare well with X-ray crystallographic data of similar complexes. The species in which the ligand is transoid and sigma-coordinated is lowest in energy, for both compounds studied. However, the eta(2)-alkene bound 1-oxabuta-1,3-diene complex is practically equal in energy to the sigma-transoid form and thus competes. This agrees with experimental observations that the heterodiene is sigma-bonded in Fe(CO)(4)(1-methyl-4-phenyl-1-azabuta-1,3-diene) but eta(2)-coordinated in Fe(CO)(4)(4-phenyl-1-oxabuta-1,3-diene). The solvent dependence was estimated from single point PCM calculations, for CH(2)Cl(2) as solvent. For the 1-azabuta-1,3-diene complexes, the relative energies of eta(2)-olefin and eta(3)-allyl forms are inverted, with the eta(3)-allyl form being more stable in polar solvents. The 1-oxabuta-1,3-diene complexes in their eta(2)-olefin and sigma-O forms change order of relative energy, and conversion to the sigma-O form is expected in a polar medium for these complexes. Calculated IR vibrational stretching frequencies of the carbonyl ligands and the C[double bond, length as m-dash]N/C[double bond, length as m-dash]O bond were compared with experimental data, to produce the best fits for the sigma-transoid form of Fe(CO)(4)(1-methyl-4-phenyl-1-azabuta-1,3-diene) and eta(2)-olefin bonded Fe(CO)(4)(4-phenyl-1-oxabuta-1,3-diene). These results are again consistent with the experiment and show that the DFT method applied in this work can be used as an aid for structural validation.
采用密度泛函理论(DFT)计算(B3LYP/LANL2DZ/6 - 31G*)来研究1 - 甲基 - 4 - 苯基 - 1 - 氮杂 - 1,3 - 丁二烯和4 - 苯基 - 1 - 氧杂 - 1,3 - 丁二烯与Fe(CO)(4)部分的结合方式。作为可能的配位模式,考虑了通过C = C或C = N/C = O键的η(2) - 配位、与杂原子孤对的σ - 配位,或通过C = C - C或N = C - C/O = C - C部分的η(3) - 配位。后一种形式涉及杂二烯的未配位原子与一个羰基配体偶联形成酰基物种。所有结构的计算几何参数与类似配合物的X射线晶体学数据吻合良好。对于所研究的两种化合物,配体呈反式且为σ - 配位的物种能量最低。然而,η(2) - 烯烃配位的1 - 氧杂 - 1,3 - 丁二烯配合物的能量实际上与σ - 反式形式相当,因此存在竞争。这与实验观察结果一致,即在Fe(CO)(4)(1 - 甲基 - 4 - 苯基 - 1 - 氮杂 - 1,3 - 丁二烯)中杂二烯以σ - 键结合,而在Fe(CO)(4)(4 - 苯基 - 1 - 氧杂 - 1,3 - 丁二烯)中以η(2) - 配位。溶剂依赖性通过以CH(2)Cl(2)为溶剂进行的单点PCM计算来估计。对于1 - 氮杂 - 1,3 - 丁二烯配合物,η(2) - 烯烃和η(3) - 烯丙基形式的相对能量发生反转,η(3) - 烯丙基形式在极性溶剂中更稳定。1 - 氧杂 - 1,3 - 丁二烯配合物的η(2) - 烯烃和σ - O形式的相对能量顺序发生变化,预计在极性介质中这些配合物会转化为σ - O形式。将羰基配体以及C[双键,长度为中划线]N/C[双键,长度为中划线]O键的计算红外振动伸缩频率与实验数据进行比较,以得到Fe(CO)(4)(1 - 甲基 - 4 - 苯基 - 1 - 氮杂 - 1,3 - 丁二烯)的σ - 反式形式和η(2) - 烯烃配位的Fe(CO)(4)(4 - 苯基 - 1 - 氧杂 - 1,3 - 丁二烯)的最佳拟合。这些结果再次与实验一致,表明本工作中应用的DFT方法可用于辅助结构验证。