Villalobos Carlos, Nadal Angel, Núñez Lucía, Quesada Iván, Chamero Pablo, Alonso María T, García-Sancho Javier
Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid and CSIC, Facultad de Medicina, Spain.
Cell Calcium. 2005 Aug;38(2):131-9. doi: 10.1016/j.ceca.2005.06.029.
The stimulus-secretion coupling for insulin secretion by pancreatic beta cells in response to high glucose involves synchronic cytosolic calcium oscillations driven by bursting electrical activity. Calcium inside organelles can regulate additional functions, but analysis of subcellular calcium signals, specially at the single cell level, has been hampered for technical constrains. Here we have monitored nuclear calcium oscillations by bioluminescence imaging of targeted aequorin in individual cells within intact islets of Langerhans as well as in the whole islet. We find that glucose generates a pattern of nuclear calcium oscillations resembling those found in the cytosol. Some cells showed synchronous nuclear calcium oscillations suggesting that the islet of Langerhans may also regulate the activation of Ca(2+)-responsive nuclear processes, such as gene transcription, in a coordinated, synchronic manner. The nuclear Ca(2+) oscillations are due to bursting electrical activity and activation of plasma membrane voltage-gated Ca(2+) channels with little or no contribution of calcium release from the intracellular Ca(2+) stores. Irregularities in consumption of aequorins suggests that depolarization may generate formation of steep Ca(2+) gradients in both the cytosol and the nucleus, but further research is required to investigate the role of such high [Ca(2+)] microdomains.
胰腺β细胞对高血糖作出反应分泌胰岛素的刺激-分泌偶联涉及由爆发性电活动驱动的同步胞质钙振荡。细胞器内的钙可调节其他功能,但由于技术限制,亚细胞钙信号的分析,特别是在单细胞水平上的分析受到了阻碍。在这里,我们通过对完整胰岛内单个细胞以及整个胰岛中靶向水母发光蛋白的生物发光成像来监测核钙振荡。我们发现葡萄糖产生的核钙振荡模式类似于在细胞质中发现的模式。一些细胞显示出同步的核钙振荡,这表明胰岛也可能以协调、同步的方式调节Ca(2+)反应性核过程(如基因转录)的激活。核Ca(2+)振荡是由于爆发性电活动和质膜电压门控Ca(2+)通道的激活,细胞内Ca(2+)储存释放的钙贡献很小或没有贡献。水母发光蛋白消耗的不规则性表明去极化可能在细胞质和细胞核中产生陡峭的Ca(2+)梯度,但需要进一步研究来调查这种高[Ca(2+)]微区的作用。