Suppr超能文献

陆生动物的光感受器光谱敏感性:对亮度和色觉的适应

Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision.

作者信息

Osorio D, Vorobyev M

机构信息

School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.

出版信息

Proc Biol Sci. 2005 Sep 7;272(1574):1745-52. doi: 10.1098/rspb.2005.3156.

Abstract

This review outlines how eyes of terrestrial vertebrates and insects meet the competing requirements of coding both spatial and spectral information. There is no unique solution to this problem. Thus, mammals and honeybees use their long-wavelength receptors for both achromatic (luminance) and colour vision, whereas flies and birds probably use separate sets of photoreceptors for the two purposes. In particular, we look at spectral tuning and diversification among 'long-wavelength' receptors (sensitivity maxima at greater than 500 nm), which play a primary role in luminance vision. Data on spectral sensitivities and phylogeny of visual photopigments can be incorporated into theoretical models to suggest how eyes are adapted to coding natural stimuli. Models indicate, for example, that animal colour vision--involving five or fewer broadly tuned receptors--is well matched to most natural spectra. We can also predict that the particular objects of interest and signal-to-noise ratios will affect the optimal eye design. Nonetheless, it remains difficult to account for the adaptive significance of features such as co-expression of photopigments in single receptors, variation in spectral sensitivities of mammalian L-cone pigments and the diversification of long-wavelength receptors that has occurred in several terrestrial lineages.

摘要

这篇综述概述了陆生脊椎动物和昆虫的眼睛如何满足对空间信息和光谱信息进行编码的相互竞争的需求。对于这个问题没有唯一的解决方案。因此,哺乳动物和蜜蜂利用它们的长波长感受器进行无色觉(亮度)和颜色视觉,而苍蝇和鸟类可能分别使用不同的光感受器来实现这两个目的。特别是,我们研究了“长波长”感受器(在大于500纳米处有最大灵敏度)之间的光谱调谐和多样化,这些感受器在亮度视觉中起主要作用。视觉光色素的光谱敏感性和系统发育数据可以纳入理论模型,以表明眼睛是如何适应对自然刺激进行编码的。例如,模型表明,涉及五个或更少宽泛调谐感受器的动物颜色视觉与大多数自然光谱非常匹配。我们还可以预测,特定的感兴趣对象和信噪比将影响最佳眼睛设计。尽管如此,仍然难以解释诸如单个感受器中光色素的共表达、哺乳动物L锥体色素光谱敏感性的变化以及在几个陆生谱系中发生的长波长感受器多样化等特征的适应性意义。

相似文献

1
Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision.
Proc Biol Sci. 2005 Sep 7;272(1574):1745-52. doi: 10.1098/rspb.2005.3156.
2
The tuning of human photopigments may minimize red-green chromatic signals in natural conditions.
Proc Biol Sci. 1993 Jun 22;252(1335):209-13. doi: 10.1098/rspb.1993.0067.
3
Adaptive plasticity during the development of colour vision.
Prog Retin Eye Res. 2005 Jul;24(4):521-36. doi: 10.1016/j.preteyeres.2005.01.002.
4
The origins of colour vision in vertebrates.
Clin Exp Optom. 2004 Jul;87(4-5):217-23. doi: 10.1111/j.1444-0938.2004.tb05051.x.
5
Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse.
Vision Res. 2004;44(14):1615-22. doi: 10.1016/j.visres.2004.01.016.
6
Thresholds and noise limitations of colour vision in dim light.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 5;372(1717). doi: 10.1098/rstb.2016.0065.
7
On some mathematical techniques for the analysis of visual spectral sensitivities.
Biophys J. 1977 May;18(2):189-208. doi: 10.1016/S0006-3495(77)85607-5.
8
Aspects of photoreception in aquatic environments.
Symp Soc Exp Biol. 1985;39:373-86.
9
Ultraviolet receptors and color vision: evolutionary implications and a dissonance of paradigms.
Vision Res. 1994 Jun;34(11):1479-87. doi: 10.1016/0042-6989(94)90150-3.
10
Colour in the eye of the beholder: receptor sensitivities and neural circuits underlying colour opponency and colour perception.
Curr Opin Neurobiol. 2016 Dec;41:106-112. doi: 10.1016/j.conb.2016.09.007. Epub 2016 Sep 17.

引用本文的文献

1
Camouflage Using Surface Disruption: The Importance of Corners Versus Edges.
Ecol Evol. 2025 Aug 21;15(8):e72052. doi: 10.1002/ece3.72052. eCollection 2025 Aug.
2
Intraspecific Variation in Dorsal Colour Patterns of Lizards From the Perspective of Relevant Observers.
Ecol Evol. 2025 Aug 11;15(8):e71944. doi: 10.1002/ece3.71944. eCollection 2025 Aug.
3
Flap-necked chameleons change colour to match their background.
Biol Lett. 2025 Aug;21(8):20250134. doi: 10.1098/rsbl.2025.0134. Epub 2025 Aug 6.
4
Mutualisms within light microhabitats are associated with sensory convergence in a mimetic butterfly community.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2422397122. doi: 10.1073/pnas.2422397122. Epub 2025 Jul 15.
6
Widespread and Convergent Evolution of Cone Monochromacy in Galeomorph Sharks.
Mol Biol Evol. 2025 Mar 5;42(3). doi: 10.1093/molbev/msaf043.
7
Genomic insights into marine environment adaptation and conservation of the threatened olive ridley turtle ().
iScience. 2025 Jan 8;28(2):111776. doi: 10.1016/j.isci.2025.111776. eCollection 2025 Feb 21.
9
Predator perception of aposematic and cryptic color morphs in two species.
Ecol Evol. 2024 Sep 30;14(10):e70351. doi: 10.1002/ece3.70351. eCollection 2024 Oct.
10
Species-specific circuitry of double cone photoreceptors in two avian retinas.
Commun Biol. 2024 Aug 14;7(1):992. doi: 10.1038/s42003-024-06697-2.

本文引用的文献

1
3
Thermal activation and photoactivation of visual pigments.
Biophys J. 2004 Jun;86(6):3653-62. doi: 10.1529/biophysj.103.035626.
4
Early duplication and functional diversification of the opsin gene family in insects.
Mol Biol Evol. 2004 Aug;21(8):1583-94. doi: 10.1093/molbev/msh162. Epub 2004 May 21.
7
Molecular evolution of bat color vision genes.
Mol Biol Evol. 2004 Feb;21(2):295-302. doi: 10.1093/molbev/msh015. Epub 2003 Dec 5.
8
Ancient colour vision: multiple opsin genes in the ancestral vertebrates.
Curr Biol. 2003 Nov 11;13(22):R864-5. doi: 10.1016/j.cub.2003.10.044.
9
Discrimination of oriented visual textures by poultry chicks.
Vision Res. 2004 Jan;44(1):83-9. doi: 10.1016/j.visres.2003.08.014.
10
Spectral organization of the eye of a butterfly, Papilio.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Nov;189(11):791-800. doi: 10.1007/s00359-003-0454-7. Epub 2003 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验