Suppr超能文献

视觉色素的热激活和光激活。

Thermal activation and photoactivation of visual pigments.

作者信息

Ala-Laurila Petri, Donner Kristian, Koskelainen Ari

机构信息

Laboratory of Biomedical Engineering, Helsinki University of Technology, Helsinki, Finland.

出版信息

Biophys J. 2004 Jun;86(6):3653-62. doi: 10.1529/biophysj.103.035626.

Abstract

A visual pigment molecule in a retinal photoreceptor cell can be activated not only by absorption of a photon but also "spontaneously" by thermal energy. Current estimates of the activation energies for these two processes in vertebrate rod and cone pigments are on the order of 40-50 kcal/mol for activation by light and 20-25 kcal/mol for activation by heat, which has forced the conclusion that the two follow quite different molecular routes. It is shown here that the latter estimates, derived from the temperature dependence of the rate of pigment-initiated "dark events" in rods, depend on the unrealistic assumption that thermal activation of a complex molecule like rhodopsin (or even its 11-cis retinaldehyde chromophore) happens through a simple process, somewhat like the collision of gas molecules. When the internal energy present in the many vibrational modes of the molecule is taken into account, the thermal energy distribution of the molecules cannot be described by Boltzmann statistics, and conventional Arrhenius analysis gives incorrect estimates for the energy barrier. When the Boltzmann distribution is replaced by one derived by Hinshelwood for complex molecules with many vibrational modes, the same experimental data become consistent with thermal activation energies that are close to or even equal to the photoactivation energies. Thus activation by light and by heat may in fact follow the same molecular route, starting with 11-cis to all-trans isomerization of the chromophore in the native (resting) configuration of the opsin. Most importantly, the same model correctly predicts the empirical correlation between the wavelength of maximum absorbance and the rate of thermal activation in the whole set of visual pigments studied.

摘要

视网膜光感受器细胞中的视觉色素分子不仅可以通过吸收光子被激活,还可以被热能“自发”激活。目前对脊椎动物视杆和视锥色素中这两个过程的激活能估计,光激活的能量约为40 - 50千卡/摩尔,热激活的能量约为20 - 25千卡/摩尔,这使得人们得出结论,两者遵循完全不同的分子途径。本文表明,后者的估计值来自视杆中色素引发的“暗事件”速率对温度的依赖性,它依赖于一个不切实际的假设,即像视紫红质(甚至其11 - 顺式视黄醛发色团)这样的复杂分子的热激活是通过一个简单过程发生的,有点像气体分子的碰撞。当考虑分子许多振动模式中存在的内能时,分子的热能分布不能用玻尔兹曼统计来描述,传统的阿累尼乌斯分析给出的能垒估计是不正确的。当用欣谢尔伍德为具有许多振动模式的复杂分子推导的分布取代玻尔兹曼分布时,相同的实验数据与接近甚至等于光激活能的热激活能变得一致。因此,光激活和热激活实际上可能遵循相同的分子途径,从视蛋白天然(静止)构型中发色团的11 - 顺式向全反式异构化开始。最重要的是,同一模型正确地预测了在所研究的整个视觉色素组中最大吸收波长与热激活速率之间的经验相关性。

相似文献

1
Thermal activation and photoactivation of visual pigments.
Biophys J. 2004 Jun;86(6):3653-62. doi: 10.1529/biophysj.103.035626.
3
Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods.
J Physiol. 2007 Nov 15;585(Pt 1):57-74. doi: 10.1113/jphysiol.2007.142935. Epub 2007 Sep 20.
4
On the relation between the photoactivation energy and the absorbance spectrum of visual pigments.
Vision Res. 2004;44(18):2153-8. doi: 10.1016/j.visres.2004.03.031.
6
Measurement of thermal contribution to photoreceptor sensitivity.
Nature. 2000 Jan 13;403(6766):220-3. doi: 10.1038/35003242.
8
Dark noise in the outer segment membrane current of green rod photoreceptors from toad retina.
J Physiol. 1984 Apr;349:607-18. doi: 10.1113/jphysiol.1984.sp015176.
9
Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.
J Physiol. 2005 Oct 1;568(Pt 1):83-95. doi: 10.1113/jphysiol.2005.091942. Epub 2005 Jul 1.
10
On the molecular origin of photoreceptor noise.
Nature. 1993 Nov 4;366(6450):64-6. doi: 10.1038/366064a0.

引用本文的文献

2
Evolutionary adaptation of visual pigments in geckos for their photic environment.
Sci Adv. 2021 Oct;7(40):eabj1316. doi: 10.1126/sciadv.abj1316. Epub 2021 Oct 1.
3
Action and Ion Mobility Spectroscopy of a Shortened Retinal Derivative.
J Am Soc Mass Spectrom. 2018 Nov;29(11):2152-2159. doi: 10.1007/s13361-018-2033-8. Epub 2018 Jul 30.
5
The discovery of the ability of rod photoreceptors to signal single photons.
J Gen Physiol. 2018 Mar 5;150(3):383-388. doi: 10.1085/jgp.201711970. Epub 2018 Feb 21.
6
Chlorophyll-Derivative Modulation of Rhodopsin Signaling Properties through Evolutionarily Conserved Interaction Pathways.
Front Mol Biosci. 2017 Dec 12;4:85. doi: 10.3389/fmolb.2017.00085. eCollection 2017.
7
Evolution of nonspectral rhodopsin function at high altitudes.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7385-7390. doi: 10.1073/pnas.1705765114. Epub 2017 Jun 22.
8
Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5437-5442. doi: 10.1073/pnas.1620010114. Epub 2017 May 8.
10
Biophotons Contribute to Retinal Dark Noise.
Neurosci Bull. 2016 Jun;32(3):246-52. doi: 10.1007/s12264-016-0029-6. Epub 2016 Apr 8.

本文引用的文献

1
ENERGY, QUANTA, AND VISION.
J Gen Physiol. 1942 Jul 20;25(6):819-40. doi: 10.1085/jgp.25.6.819.
2
The thermal decomposition of visual purple.
J Physiol. 1938 Jun 14;93(1):24-38. doi: 10.1113/jphysiol.1938.sp003622.
3
On the relation between the photoactivation energy and the absorbance spectrum of visual pigments.
Vision Res. 2004;44(18):2153-8. doi: 10.1016/j.visres.2004.03.031.
4
The interplay o light and heat in bleaching rhodopsin.
J Gen Physiol. 1952 Jan;35(3):495-517. doi: 10.1085/jgp.35.3.495.
6
Purkinje shift and retinal noise.
Nature. 1957 Feb 2;179(4553):255-6. doi: 10.1038/179255b0.
7
Retinal noise and absolute threshold.
J Opt Soc Am. 1956 Aug;46(8):634-9. doi: 10.1364/josa.46.000634.
8
A theoretical interpretation of spectral sensitivity curves at long wavelengths.
J Physiol. 1955 Oct 28;130(1):45-52. doi: 10.1113/jphysiol.1955.sp005391.
9
Temperature effects on spectral properties of red and green rods in toad retina.
Vis Neurosci. 2002 Nov-Dec;19(6):781-92. doi: 10.1017/s0952523802196088.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验