Suppr超能文献

使用离散小波编码减少磁共振波谱成像的采集时间

Acquisition time reduction in magnetic resonance spectroscopic imaging using discrete wavelet encoding.

作者信息

Serrai Hacene, Senhadji Lotfi

机构信息

Institute for Biodiagnostics, National Research Council, Winnipeg, MB, Canada.

出版信息

J Magn Reson. 2005 Nov;177(1):22-30. doi: 10.1016/j.jmr.2005.07.006.

Abstract

This paper describes a new magnetic resonance spectroscopic imaging (MRSI) technique based upon the discrete wavelet transform to reduce acquisition time and cross voxel contamination. Prototype functions called wavelets are used in wavelet encoding to localize defined regions in localized space by dilations and translations. Wavelet encoding in MRSI is achieved by matching the slice selective RF pulse profiles to a set of dilated and translated wavelets. Single and dual band slice selective excitation and refocusing pulses, with profiles resembling Haar wavelets, are used in a spin-echo sequence to acquire 2D-MRSI wavelet encoding data. The 2D space region is spanned up to the desired resolution by a proportional number of dilations (increases in the localization gradients) and translations (frequency shift) of the Haar wavelets (RF pulses). Acquisition time is reduced by acquiring successive MR signals from regions of space with variable size and different locations with no requirement for a TR waiting time between acquisitions. An inverse wavelet transform is performed on the data to produce the correct spatial MR signal distribution.

摘要

本文描述了一种基于离散小波变换的新型磁共振波谱成像(MRSI)技术,用于减少采集时间和体素间交叉污染。在小波编码中使用称为小波的原型函数,通过伸缩和平移在局部空间中定位定义区域。MRSI中的小波编码是通过将切片选择性射频脉冲轮廓与一组伸缩和平移的小波进行匹配来实现的。在自旋回波序列中使用具有类似于哈尔小波轮廓的单波段和双波段切片选择性激发和重聚焦脉冲,以获取二维MRSI小波编码数据。通过哈尔小波(射频脉冲)的伸缩(定位梯度增加)和平移(频率偏移)的相应数量,将二维空间区域扩展到所需分辨率。通过从具有可变大小和不同位置的空间区域采集连续的磁共振信号来减少采集时间,且采集之间不需要TR等待时间。对数据执行逆小波变换以产生正确的空间磁共振信号分布。

相似文献

1
3
Multilevel wavelet-transform encoding in MRI.
J Magn Reson Imaging. 1996 May-Jun;6(3):529-40. doi: 10.1002/jmri.1880060317.
4
Wavelet encoding for improved SNR and retrospective slice thickness adjustment.
Magn Reson Med. 1998 Mar;39(3):383-91. doi: 10.1002/mrm.1910390308.
5
Hadamard slice encoding for reduced-FOV diffusion-weighted imaging.
Magn Reson Med. 2014 Nov;72(5):1277-90. doi: 10.1002/mrm.25044. Epub 2013 Nov 21.
6
Adiabatic refocusing pulses for volume selection in magnetic resonance spectroscopic imaging.
Magn Reson Med. 2007 Mar;57(3):548-53. doi: 10.1002/mrm.21162.
7
Reduced phase encoding in spectroscopic imaging.
Magn Reson Med. 1994 Jun;31(6):645-51. doi: 10.1002/mrm.1910310610.
9
Improved spatial localization in magnetic resonance spectroscopic imaging with two-dimensional PSF-Choice encoding.
J Magn Reson. 2018 May;290:18-28. doi: 10.1016/j.jmr.2018.03.002. Epub 2018 Mar 3.
10
Fast magnetic resonance spectroscopic imaging (MRSI) using wavelet encoding and parallel imaging: in vitro results.
J Magn Reson. 2011 Jul;211(1):45-51. doi: 10.1016/j.jmr.2011.03.019. Epub 2011 Apr 2.

引用本文的文献

1
Reduction of Acquisition time using Partition of the sIgnal Decay in Spectroscopic Imaging technique (RAPID-SI).
PLoS One. 2018 Nov 7;13(11):e0207015. doi: 10.1371/journal.pone.0207015. eCollection 2018.
2
Small field of view imaging using wavelet encoding with 2 dimensional RF pulses and gradient echo: phantom results.
MAGMA. 2010 Feb;23(1):45-52. doi: 10.1007/s10334-009-0193-z. Epub 2009 Dec 19.

本文引用的文献

1
Theoretical comparison of Fourier and wavelet encoding in magnetic resonance imaging.
IEEE Trans Med Imaging. 1996;15(2):141-53. doi: 10.1109/42.491416.
2
Proton magnetic resonance spectroscopic imaging in brain tumor diagnosis.
Neurosurg Clin N Am. 2005 Jan;16(1):101-14, vi. doi: 10.1016/j.nec.2004.07.004.
3
Proton magnetic resonance spectroscopic evaluation of brain tumor metabolism.
Semin Oncol. 2004 Oct;31(5):605-17. doi: 10.1053/j.seminoncol.2004.07.003.
4
1H and 31P spectroscopic imaging of epilepsy: spectroscopic and histologic correlations.
Epilepsia. 2004;45 Suppl 4:17-23. doi: 10.1111/j.0013-9580.2004.04004.x.
5
Fast 31P chemical shift imaging using SSFP methods.
Magn Reson Med. 2002 Oct;48(4):633-9. doi: 10.1002/mrm.10279.
6
Line scan echo planar spectroscopic imaging.
Magn Reson Med. 2000 Oct;44(4):521-4. doi: 10.1002/1522-2594(200010)44:4<521::aid-mrm4>3.0.co;2-#.
7
Reconstruction strategy for echo planar spectroscopy and its application to partially undersampled imaging.
Magn Reson Med. 2000 Sep;44(3):412-7. doi: 10.1002/1522-2594(200009)44:3<412::aid-mrm11>3.0.co;2-p.
8
Method for improved multiband excitation profiles using the Shinnar-Le Roux transform.
Magn Reson Med. 1999 Sep;42(3):577-84. doi: 10.1002/(sici)1522-2594(199909)42:3<577::aid-mrm21>3.0.co;2-e.
9
Partial wavelet encoding: a new approach for accelerating temporal resolution in contrast-enhanced MR imaging.
J Magn Reson Imaging. 1999 May;9(5):717-24. doi: 10.1002/(sici)1522-2586(199905)9:5<717::aid-jmri15>3.0.co;2-j.
10
NAA-weighted imaging of the human brain using a conventional readout gradient.
Magn Reson Med. 1999 Jan;41(1):187-92. doi: 10.1002/(sici)1522-2594(199901)41:1<187::aid-mrm26>3.0.co;2-r.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验