Suppr超能文献

对玉米发育中的卵巢进行碳水化合物运输的成像和定量分析。

Imaging and quantifying carbohydrate transport to the developing ovaries of maize.

作者信息

Mäkelä Pirjo, McLaughlin John E, Boyer John S

机构信息

College of Marine Studies, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA.

出版信息

Ann Bot. 2005 Oct;96(5):939-49. doi: 10.1093/aob/mci246. Epub 2005 Aug 12.

Abstract

BACKGROUND AND AIMS

Shade or inadequate water can inhibit photosynthesis and limit the development of maize (Zea mays) ovaries around the time of pollination, potentially reducing the number of kernels at harvest. This study investigated whether the decreased photosynthesis diminished only the sugar supply or also altered the transport path to the ovaries.

METHODS

Photosynthesis and water potentials (Psiw) were measured in the leaves while dry matter delivery was monitored in the ovaries. Ovary glucose, starch and acid invertase activities were measured in situ. Stems were fed xylem-mobile safranin or phloem-mobile carboxyfluorescein (CF), and the dye transport to the ovaries was determined.

KEY RESULTS

Under normal conditions, the ovaries gained in dry mass, and starch accumulated in the pedicel and ovary wall. Glucose accumulated in the pedicel, apparently in the apoplast where insoluble (cell-wall-bound) acid invertase acted on the arriving sucrose. A glucose gradient developed from pedicel to nucellus. Safranin moved in the xylem and did not reach the ovary, but CF moved in the phloem and arrived at the ovary. CF also spread into the pedicel but unlike glucose it did not enter the nucellus. Low Psiw or shade decreased leaf photosynthesis, ovary dry mass accumulation, invertase activities, pedicel glucose, starch accumulation and CF delivery. Removal of these treatments reversed the effects.

CONCLUSIONS

The success of CF in tracing the general path and rate of carbohydrate transport gave visual evidence that phloem transport to the ovary decreased at low Psiw or in the shade but otherwise remained functional. The decreases indicated that losses in carbohydrate delivery are central features of failed ovary development under these conditions. The selectivity of transport into the nucellus resembled the situation later when embryo and endosperm are present and selective uptake occurs from the apoplast.

摘要

背景与目的

遮荫或水分不足会抑制光合作用,并在授粉期左右限制玉米(Zea mays)雌穗的发育,可能减少收获时的籽粒数量。本研究调查了光合作用下降是否仅减少了糖分供应,还是也改变了向雌穗的运输途径。

方法

在叶片中测量光合作用和水势(Ψw),同时监测雌穗中的干物质输送。原位测量雌穗中的葡萄糖、淀粉和酸性转化酶活性。给茎部注入木质部可移动的番红或韧皮部可移动的羧基荧光素(CF),并测定染料向雌穗的运输情况。

主要结果

在正常条件下,雌穗干重增加,淀粉在花梗和子房壁中积累。葡萄糖在花梗中积累,显然是在质外体中,不溶性(细胞壁结合)酸性转化酶作用于到达的蔗糖。从花梗到珠心形成了葡萄糖梯度。番红在木质部中移动,未到达雌穗,但CF在韧皮部中移动并到达雌穗。CF也扩散到花梗中,但与葡萄糖不同,它没有进入珠心。低Ψw或遮荫会降低叶片光合作用、雌穗干物质积累、转化酶活性、花梗葡萄糖、淀粉积累和CF输送。去除这些处理后,效果逆转。

结论

CF成功追踪碳水化合物运输的总体途径和速率,直观地证明了在低Ψw或遮荫条件下,向雌穗的韧皮部运输减少,但在其他情况下仍保持功能。这些减少表明,在这些条件下,碳水化合物输送的损失是雌穗发育失败的核心特征。向珠心运输的选择性类似于后来存在胚和胚乳且从质外体进行选择性吸收时的情况。

相似文献

1
Imaging and quantifying carbohydrate transport to the developing ovaries of maize.
Ann Bot. 2005 Oct;96(5):939-49. doi: 10.1093/aob/mci246. Epub 2005 Aug 12.
5
Differences in membrane selectivity drive phloem transport to the apoplast from which maize florets develop.
Ann Bot. 2013 Apr;111(4):551-62. doi: 10.1093/aob/mct012. Epub 2013 Feb 6.
6
Sucrose feeding reverses shade-induced kernel losses in maize.
Ann Bot. 2010 Sep;106(3):395-403. doi: 10.1093/aob/mcq132. Epub 2010 Jul 8.
7
Starch and the control of kernel number in maize at low water potentials.
Plant Physiol. 1999 Sep;121(1):25-36. doi: 10.1104/pp.121.1.25.
8
Grain yields with limited water.
J Exp Bot. 2004 Nov;55(407):2385-94. doi: 10.1093/jxb/erh219. Epub 2004 Jul 30.

引用本文的文献

1
A Moderate Water Deficit Induces Profound Changes in the Proteome of Developing Maize Ovaries.
Biomolecules. 2024 Sep 30;14(10):1239. doi: 10.3390/biom14101239.
2
Foliar Supplied Boron Can Be Transported to Roots as a Boron-Sucrose Complex via Phloem in Citrus Trees.
Front Plant Sci. 2020 Mar 10;11:250. doi: 10.3389/fpls.2020.00250. eCollection 2020.
3
Ovary abortion is prevalent in diverse maize inbred lines and is under genetic control.
Sci Rep. 2018 Aug 29;8(1):13032. doi: 10.1038/s41598-018-31216-9.
5
Sterility Caused by Floral Organ Degeneration and Abiotic Stresses in and Cereal Grains.
Front Plant Sci. 2016 Oct 14;7:1503. doi: 10.3389/fpls.2016.01503. eCollection 2016.
6
Sucrose Transporter ZmSut1 Expression and Localization Uncover New Insights into Sucrose Phloem Loading.
Plant Physiol. 2016 Nov;172(3):1876-1898. doi: 10.1104/pp.16.00884. Epub 2016 Sep 12.
7
Is Change in Ovary Carbon Status a Cause or a Consequence of Maize Ovary Abortion in Water Deficit during Flowering?
Plant Physiol. 2016 Jun;171(2):997-1008. doi: 10.1104/pp.15.01130. Epub 2016 Apr 19.
8
Staying Alive or Going to Die During Terminal Senescence-An Enigma Surrounding Yield Stability.
Front Plant Sci. 2015 Nov 30;6:1070. doi: 10.3389/fpls.2015.01070. eCollection 2015.
10
Differences in membrane selectivity drive phloem transport to the apoplast from which maize florets develop.
Ann Bot. 2013 Apr;111(4):551-62. doi: 10.1093/aob/mct012. Epub 2013 Feb 6.

本文引用的文献

1
Post-sieve element transport of photoassimilates in sink regions.
J Exp Bot. 1996 Aug;47 Spec No:1165-77. doi: 10.1093/jxb/47.Special_Issue.1165.
2
Post-phloem transport: principles and problems.
J Exp Bot. 1996 Aug;47 Spec No:1141-54. doi: 10.1093/jxb/47.Special_Issue.1141.
3
Roles of carbohydrate supply and phytohormones in maize kernel abortion.
Plant Physiol. 1989 Nov;91(3):986-92. doi: 10.1104/pp.91.3.986.
6
Kernel Abortion in Maize : II. Distribution of C among Kernel Carbohydrates.
Plant Physiol. 1986 Jun;81(2):511-5. doi: 10.1104/pp.81.2.511.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验