Needleman Daniel J, Ojeda-Lopez Miguel A, Raviv Uri, Ewert Kai, Miller Herbert P, Wilson Leslie, Safinya Cyrus R
Materials Department, University of California, Santa Barbara, CA 93106, USA.
Biophys J. 2005 Nov;89(5):3410-23. doi: 10.1529/biophysj.104.057679. Epub 2005 Aug 12.
Microtubules (MTs) are hollow cylindrical polymers composed of alphabeta-tubulin heterodimers that align head-to-tail in the MT wall, forming linear protofilaments that interact laterally. We introduce a probe of the interprotofilament interactions within MTs and show that this technique gives insight into the mechanisms by which MT-associated proteins (MAPs) and taxol stabilize MTs. In addition, we present further measurements of the mechanical properties of MT walls, MT-MT interactions, and the entry of polymers into the MT lumen. These results are obtained from a synchrotron small angle x-ray diffraction (SAXRD) study of MTs under osmotic stress. Above a critical osmotic pressure, P(cr), we observe rectangular bundles of MTs whose cross sections have buckled to a noncircular shape; further increases in pressure continue to distort MTs elastically. The P(cr) of approximately 600 Pa provides, for the first time, a measure of the bending modulus of the interprotofilament bond within an MT. The presence of neuronal MAPs greatly increases P(cr), whereas surprisingly, the cancer chemotherapeutic drug taxol, which suppresses MT dynamics and inhibits MT depolymerization, does not affect the interprotofilament interactions. This SAXRD-osmotic stress technique, which has enabled measurements of the mechanical properties of MTs, should find broad application for studying interactions between MTs and of MTs with MAPs and MT-associated drugs.
微管(MTs)是由αβ-微管蛋白异二聚体组成的中空圆柱形聚合物,这些异二聚体在微管壁中首尾相连排列,形成侧向相互作用的线性原纤维。我们引入了一种微管内原纤维间相互作用的探针,并表明该技术有助于深入了解微管相关蛋白(MAPs)和紫杉醇稳定微管的机制。此外,我们还进一步测量了微管壁的力学性能、微管-微管相互作用以及聚合物进入微管腔的情况。这些结果来自于对处于渗透压下的微管进行的同步加速器小角X射线衍射(SAXRD)研究。在临界渗透压P(cr)以上,我们观察到微管的矩形束,其横截面已弯曲成非圆形;压力的进一步增加继续使微管发生弹性变形。约600 Pa的P(cr)首次提供了微管内原纤维间键弯曲模量的度量。神经元MAPs的存在大大增加了P(cr),而令人惊讶的是,抑制微管动力学并抑制微管解聚的癌症化疗药物紫杉醇并不影响原纤维间的相互作用。这种SAXRD-渗透压技术能够测量微管的力学性能,在研究微管之间以及微管与MAPs和微管相关药物之间的相互作用方面应具有广泛的应用。