Suppr超能文献

微管的径向压缩以及紫杉醇和相关蛋白的作用机制。

Radial compression of microtubules and the mechanism of action of taxol and associated proteins.

作者信息

Needleman Daniel J, Ojeda-Lopez Miguel A, Raviv Uri, Ewert Kai, Miller Herbert P, Wilson Leslie, Safinya Cyrus R

机构信息

Materials Department, University of California, Santa Barbara, CA 93106, USA.

出版信息

Biophys J. 2005 Nov;89(5):3410-23. doi: 10.1529/biophysj.104.057679. Epub 2005 Aug 12.

Abstract

Microtubules (MTs) are hollow cylindrical polymers composed of alphabeta-tubulin heterodimers that align head-to-tail in the MT wall, forming linear protofilaments that interact laterally. We introduce a probe of the interprotofilament interactions within MTs and show that this technique gives insight into the mechanisms by which MT-associated proteins (MAPs) and taxol stabilize MTs. In addition, we present further measurements of the mechanical properties of MT walls, MT-MT interactions, and the entry of polymers into the MT lumen. These results are obtained from a synchrotron small angle x-ray diffraction (SAXRD) study of MTs under osmotic stress. Above a critical osmotic pressure, P(cr), we observe rectangular bundles of MTs whose cross sections have buckled to a noncircular shape; further increases in pressure continue to distort MTs elastically. The P(cr) of approximately 600 Pa provides, for the first time, a measure of the bending modulus of the interprotofilament bond within an MT. The presence of neuronal MAPs greatly increases P(cr), whereas surprisingly, the cancer chemotherapeutic drug taxol, which suppresses MT dynamics and inhibits MT depolymerization, does not affect the interprotofilament interactions. This SAXRD-osmotic stress technique, which has enabled measurements of the mechanical properties of MTs, should find broad application for studying interactions between MTs and of MTs with MAPs and MT-associated drugs.

摘要

微管(MTs)是由αβ-微管蛋白异二聚体组成的中空圆柱形聚合物,这些异二聚体在微管壁中首尾相连排列,形成侧向相互作用的线性原纤维。我们引入了一种微管内原纤维间相互作用的探针,并表明该技术有助于深入了解微管相关蛋白(MAPs)和紫杉醇稳定微管的机制。此外,我们还进一步测量了微管壁的力学性能、微管-微管相互作用以及聚合物进入微管腔的情况。这些结果来自于对处于渗透压下的微管进行的同步加速器小角X射线衍射(SAXRD)研究。在临界渗透压P(cr)以上,我们观察到微管的矩形束,其横截面已弯曲成非圆形;压力的进一步增加继续使微管发生弹性变形。约600 Pa的P(cr)首次提供了微管内原纤维间键弯曲模量的度量。神经元MAPs的存在大大增加了P(cr),而令人惊讶的是,抑制微管动力学并抑制微管解聚的癌症化疗药物紫杉醇并不影响原纤维间的相互作用。这种SAXRD-渗透压技术能够测量微管的力学性能,在研究微管之间以及微管与MAPs和微管相关药物之间的相互作用方面应具有广泛的应用。

相似文献

1
Radial compression of microtubules and the mechanism of action of taxol and associated proteins.
Biophys J. 2005 Nov;89(5):3410-23. doi: 10.1529/biophysj.104.057679. Epub 2005 Aug 12.
2
Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions.
Phys Rev Lett. 2004 Nov 5;93(19):198104. doi: 10.1103/PhysRevLett.93.198104. Epub 2004 Nov 4.
4
Structure of Dynamic, Taxol-Stabilized, and GMPPCP-Stabilized Microtubule.
J Phys Chem B. 2017 Sep 14;121(36):8427-8436. doi: 10.1021/acs.jpcb.7b01057. Epub 2017 Sep 1.
6
Microtubule protofilament number is modulated in a stepwise fashion by the charge density of an enveloping layer.
Biophys J. 2007 Jan 1;92(1):278-87. doi: 10.1529/biophysj.106.087478. Epub 2006 Oct 6.
8
Structural evidence for cooperative microtubule stabilization by Taxol and the endogenous dynamics regulator MAP4.
ACS Chem Biol. 2012 Apr 20;7(4):744-52. doi: 10.1021/cb200403x. Epub 2012 Feb 6.
9
10
Tau-isoform dependent enhancement of taxol mobility through microtubules.
Arch Biochem Biophys. 2008 Oct 1;478(1):119-26. doi: 10.1016/j.abb.2008.07.020. Epub 2008 Jul 26.

引用本文的文献

1
Structure and dynamics of motor-driven microtubule bundles.
Soft Matter. 2024 Jul 24;20(29):5715-5723. doi: 10.1039/d3sm01336g.
2
Active Bending of Disordered Microtubule Bundles by Kinesin Motors.
ACS Omega. 2022 Nov 18;7(48):43820-43828. doi: 10.1021/acsomega.2c04958. eCollection 2022 Dec 6.
4
Tuning the Properties of Active Microtubule Networks by Depletion Forces.
Langmuir. 2021 Jul 6;37(26):7919-7927. doi: 10.1021/acs.langmuir.1c00426. Epub 2021 Jun 16.
5
Downregulation of GPSM2 is associated with primary resistance to paclitaxel in breast cancer.
Oncol Rep. 2020 Mar;43(3):965-974. doi: 10.3892/or.2020.7471. Epub 2020 Jan 17.
6
Altered skeletal muscle microtubule-mitochondrial VDAC2 binding is related to bioenergetic impairments after paclitaxel but not vinblastine chemotherapies.
Am J Physiol Cell Physiol. 2019 Mar 1;316(3):C449-C455. doi: 10.1152/ajpcell.00384.2018. Epub 2019 Jan 9.
7
Microtubules soften due to cross-sectional flattening.
Elife. 2018 Jun 1;7:e34695. doi: 10.7554/eLife.34695.
8
Structure and Intermolecular Interactions between L-Type Straight Flagellar Filaments.
Biophys J. 2017 May 23;112(10):2184-2195. doi: 10.1016/j.bpj.2017.02.038.
9
Tubulin acetylation protects long-lived microtubules against mechanical ageing.
Nat Cell Biol. 2017 Apr;19(4):391-398. doi: 10.1038/ncb3481. Epub 2017 Feb 27.
10
The Dark Matter of Biology.
Biophys J. 2016 Sep 6;111(5):909-16. doi: 10.1016/j.bpj.2016.07.037.

本文引用的文献

2
Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions.
Phys Rev Lett. 2004 Nov 5;93(19):198104. doi: 10.1103/PhysRevLett.93.198104. Epub 2004 Nov 4.
3
Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces.
Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16099-103. doi: 10.1073/pnas.0406076101. Epub 2004 Nov 8.
4
Comment on "Collapse of single-wall carbon nanotubes is diameter dependent".
Phys Rev Lett. 2004 Oct 1;93(14):149601; author reply 149602. doi: 10.1103/PhysRevLett.93.149601. Epub 2004 Sep 27.
5
Simple growth models of rigid multifilament biopolymers.
J Chem Phys. 2004 Jul 8;121(2):1097-104. doi: 10.1063/1.1759316.
6
Polymer-induced bundling of F actin and the depletion force.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 1):051907. doi: 10.1103/PhysRevE.69.051907. Epub 2004 May 18.
7
Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer Dextran.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 1):051702. doi: 10.1103/PhysRevE.69.051702. Epub 2004 May 14.
8
Collapse of single-wall carbon nanotubes is diameter dependent.
Phys Rev Lett. 2004 Mar 5;92(9):095501. doi: 10.1103/PhysRevLett.92.095501. Epub 2004 Mar 2.
9
Microtubules as a target for anticancer drugs.
Nat Rev Cancer. 2004 Apr;4(4):253-65. doi: 10.1038/nrc1317.
10
Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration.
Mol Biol Cell. 2004 Jun;15(6):2720-8. doi: 10.1091/mbc.e04-01-0062. Epub 2004 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验