Buonassisi Tonio, Istratov Andrei A, Marcus Matthew A, Lai Barry, Cai Zhonghou, Heald Steven M, Weber Eicke R
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.
Nat Mater. 2005 Sep;4(9):676-9. doi: 10.1038/nmat1457. Epub 2005 Aug 14.
As the demand for high-quality solar-cell feedstock exceeds supply and drives prices upwards, cheaper but dirtier alternative feedstock materials are being developed. Successful use of these alternative feedstocks requires that one rigorously control the deleterious effects of the more abundant metallic impurities. In this study, we demonstrate how metal nanodefect engineering can be used to reduce the electrical activity of metallic impurities, resulting in dramatic enhancements of performance even in heavily contaminated solar-cell material. Highly sensitive synchrotron-based measurements directly confirm that the spatial and size distributions of metal nanodefects regulate the minority-carrier diffusion length, a key parameter for determining the actual performance of solar-cell devices. By engineering the distributions of metal-impurity nanodefects in a controlled fashion, the minority-carrier diffusion length can be increased by up to a factor of four, indicating that the use of lower-quality feedstocks with proper controls may be a viable alternative to producing cost-effective solar cells.
由于对高质量太阳能电池原料的需求超过了供应并推动价格上涨,人们正在开发更便宜但更脏的替代原料材料。成功使用这些替代原料需要严格控制更丰富的金属杂质的有害影响。在本研究中,我们展示了如何利用金属纳米缺陷工程来降低金属杂质的电活性,即使在严重污染的太阳能电池材料中也能显著提高性能。基于同步加速器的高灵敏度测量直接证实,金属纳米缺陷的空间和尺寸分布调节少数载流子扩散长度,这是决定太阳能电池器件实际性能的关键参数。通过以可控方式设计金属杂质纳米缺陷的分布,少数载流子扩散长度可以增加到四倍,这表明在适当控制下使用质量较低的原料可能是生产具有成本效益的太阳能电池的可行替代方案。