Suppr超能文献

视网膜转导蛋白的法尼基化是其在光适应过程中易位的基础。

Farnesylation of retinal transducin underlies its translocation during light adaptation.

作者信息

Kassai Hidetoshi, Aiba Atsu, Nakao Kazuki, Nakamura Kenji, Katsuki Motoya, Xiong Wei-Hong, Yau King-Wai, Imai Hiroo, Shichida Yoshinori, Satomi Yoshinori, Takao Toshifumi, Okano Toshiyuki, Fukada Yoshitaka

机构信息

Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.

出版信息

Neuron. 2005 Aug 18;47(4):529-39. doi: 10.1016/j.neuron.2005.07.025.

Abstract

G proteins are posttranslationally modified by isoprenylation: either farnesylation or geranylgeranylation. The gamma subunit of retinal transducin (Talpha/Tbetagamma) is selectively farnesylated, and the farnesylation is required for light signaling mediated by transducin in rod cells. However, whether and how this selective isoprenylation regulates cellular functions remain poorly understood. Here we report that knockin mice expressing geranylgeranylated Tgamma showed normal rod responses to dim flashes under dark-adapted conditions but exhibited impaired properties in light adaptation. Of note, geranylgeranylation of Tgamma suppressed light-induced transition of Tbetagamma from membrane to cytosol, and also attenuated its light-dependent translocation from the outer segment to the inner region, an event contributing to retinal light adaptation. These results indicate that, while the farnesylation of transducin is interchangeable with the geranylgeranylation in terms of the light signaling, the selective farnesylation is important for visual sensitivity regulation by providing sufficient but not excessive membrane anchoring of Tbetagamma.

摘要

G蛋白在翻译后会被异戊二烯化修饰:即法尼基化或香叶基香叶基化。视网膜转导蛋白的γ亚基(Tα/Tβγ)被选择性地法尼基化,而这种法尼基化是视杆细胞中转导蛋白介导的光信号传导所必需的。然而,这种选择性异戊二烯化是否以及如何调节细胞功能仍知之甚少。在此我们报告,表达香叶基香叶基化Tγ的基因敲入小鼠在暗适应条件下对弱闪光的视杆细胞反应正常,但在光适应方面表现出受损特性。值得注意的是,Tγ的香叶基香叶基化抑制了光诱导的Tβγ从膜到细胞质的转变,并且还减弱了其从外段到内部区域的光依赖性易位,这一事件有助于视网膜光适应。这些结果表明,虽然就光信号传导而言,转导蛋白的法尼基化与香叶基香叶基化可相互替代,但选择性法尼基化通过为Tβγ提供足够但不过度的膜锚定,对于视觉敏感性调节很重要。

相似文献

1
Farnesylation of retinal transducin underlies its translocation during light adaptation.
Neuron. 2005 Aug 18;47(4):529-39. doi: 10.1016/j.neuron.2005.07.025.
4
Transducin activation state controls its light-dependent translocation in rod photoreceptors.
J Biol Chem. 2005 Dec 9;280(49):41069-76. doi: 10.1074/jbc.M508849200. Epub 2005 Oct 4.
6
Cul3-Klhl18 ubiquitin ligase modulates rod transducin translocation during light-dark adaptation.
EMBO J. 2019 Dec 2;38(23):e101409. doi: 10.15252/embj.2018101409. Epub 2019 Nov 7.
8
Light-dependent compartmentalization of transducin in rod photoreceptors.
Mol Neurobiol. 2008 Feb;37(1):44-51. doi: 10.1007/s12035-008-8015-2. Epub 2008 Apr 19.
9
Rod Photoreceptors Avoid Saturation in Bright Light by the Movement of the G Protein Transducin.
J Neurosci. 2021 Apr 14;41(15):3320-3330. doi: 10.1523/JNEUROSCI.2817-20.2021. Epub 2021 Feb 16.
10
Transducin translocation in rods is triggered by saturation of the GTPase-activating complex.
J Neurosci. 2007 Jan 31;27(5):1151-60. doi: 10.1523/JNEUROSCI.5010-06.2007.

引用本文的文献

2
Updates on protein-prenylation and associated inherited retinopathies.
Front Ophthalmol (Lausanne). 2024 Jul 4;4:1410874. doi: 10.3389/fopht.2024.1410874. eCollection 2024.
4
Regulation of rod photoreceptor function by farnesylated G-protein γ-subunits.
PLoS One. 2022 Aug 8;17(8):e0272506. doi: 10.1371/journal.pone.0272506. eCollection 2022.
5
Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling.
Cell Syst. 2021 Apr 21;12(4):324-337.e5. doi: 10.1016/j.cels.2021.02.001. Epub 2021 Mar 4.
6
Cul3-Klhl18 ubiquitin ligase modulates rod transducin translocation during light-dark adaptation.
EMBO J. 2019 Dec 2;38(23):e101409. doi: 10.15252/embj.2018101409. Epub 2019 Nov 7.
7
Farnesylation of the Transducin G Protein Gamma Subunit Is a Prerequisite for Its Ciliary Targeting in Rod Photoreceptors.
Front Mol Neurosci. 2018 Jan 23;11:16. doi: 10.3389/fnmol.2018.00016. eCollection 2018.
8
9
AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.
PLoS One. 2016 Feb 16;11(2):e0148874. doi: 10.1371/journal.pone.0148874. eCollection 2016.
10
Protein sorting, targeting and trafficking in photoreceptor cells.
Prog Retin Eye Res. 2013 Sep;36:24-51. doi: 10.1016/j.preteyeres.2013.03.002. Epub 2013 Apr 3.

本文引用的文献

1
Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo.
J Biol Chem. 2005 May 13;280(19):18822-32. doi: 10.1074/jbc.M501757200. Epub 2005 Mar 8.
3
Differential expression and interaction with the visual G-protein transducin of centrin isoforms in mammalian photoreceptor cells.
J Biol Chem. 2004 Dec 3;279(49):51472-81. doi: 10.1074/jbc.M406770200. Epub 2004 Aug 30.
4
Light-dependent translocation of visual arrestin regulated by the NINAC myosin III.
Neuron. 2004 Jul 8;43(1):95-103. doi: 10.1016/j.neuron.2004.06.014.
6
Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse.
J Biol Chem. 2004 Apr 30;279(18):19149-56. doi: 10.1074/jbc.M311058200. Epub 2004 Feb 18.
7
Opinion: Searching for the elusive targets of farnesyltransferase inhibitors.
Nat Rev Cancer. 2003 Dec;3(12):945-51. doi: 10.1038/nrc1234.
8
DISC ELECTROPHORESIS IN POLYACRYLAMIDE GELS: EXTENSION TO NEW CONDITIONS OF PH AND BUFFER.
Ann N Y Acad Sci. 1964 Dec 28;121:373-81. doi: 10.1111/j.1749-6632.1964.tb14210.x.
10
Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
J Neurosci. 2003 Apr 15;23(8):3124-9. doi: 10.1523/JNEUROSCI.23-08-03124.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验