Suppr超能文献

Gβγ 复合物的多样性决定了 GPCR 信号的时空偏向性。

Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling.

机构信息

Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.

Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.

出版信息

Cell Syst. 2021 Apr 21;12(4):324-337.e5. doi: 10.1016/j.cels.2021.02.001. Epub 2021 Mar 4.

Abstract

The signal transduction by G-protein-coupled receptors (GPCRs) is mediated by heterotrimeric G proteins composed from one of the 16 Gα subunits and the inseparable Gβγ complex assembled from a repertoire of 5 Gβ and 12 Gγ subunits. However, the functional role of compositional diversity in Gβγ complexes has been elusive. Using optical biosensors, we examined the function of all Gβγ combinations in living cells and uncovered two major roles of Gβγ diversity. First, we demonstrate that the identity of Gβγ subunits greatly influences the kinetics and efficacy of GPCR responses at the plasma membrane. Second, we show that different Gβγ combinations are selectively dispatched from the plasma membrane to various cellular organelles on a timescale from milliseconds to minutes. We describe the mechanisms regulating these processes and document their implications for GPCR signaling via various Gα subunits, thereby illustrating a role for the compositional diversity of G protein heterotrimers.

摘要

G 蛋白偶联受体(GPCRs)的信号转导是由异三聚体 G 蛋白介导的,该蛋白由 16 种 Gα 亚基中的一种和由 5 种 Gβ 和 12 种 Gγ 亚基组成的不可分割的 Gβγ 复合物组成。然而,Gβγ 复合物组成多样性的功能作用一直难以捉摸。我们使用光学生物传感器在活细胞中研究了所有 Gβγ 组合的功能,并揭示了 Gβγ 多样性的两个主要作用。首先,我们证明 Gβγ 亚基的身份极大地影响了 GPCR 在质膜上的反应动力学和效力。其次,我们表明,不同的 Gβγ 组合会从质膜上选择性地分配到各种细胞细胞器,时间从毫秒到分钟不等。我们描述了调节这些过程的机制,并记录了它们通过各种 Gα 亚基对 GPCR 信号转导的影响,从而说明了 G 蛋白异三聚体组成多样性的作用。

相似文献

1
Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling.
Cell Syst. 2021 Apr 21;12(4):324-337.e5. doi: 10.1016/j.cels.2021.02.001. Epub 2021 Mar 4.
3
Signaling through a G Protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model.
J Biol Chem. 2007 Jun 29;282(26):19203-16. doi: 10.1074/jbc.M701558200. Epub 2007 Apr 9.
4
Subtype-dependent regulation of Gβγ signalling.
Cell Signal. 2021 Jun;82:109947. doi: 10.1016/j.cellsig.2021.109947. Epub 2021 Feb 11.
5
Conformation- and activation-based BRET sensors differentially report on GPCR-G protein coupling.
Sci Signal. 2024 Jun 18;17(841):eadi4747. doi: 10.1126/scisignal.adi4747.
6
Disruption of the interaction between mutationally activated Gα and Gβγ attenuates aberrant signaling.
J Biol Chem. 2023 Feb;299(2):102880. doi: 10.1016/j.jbc.2023.102880. Epub 2023 Jan 7.
7
Gβγ signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Gα and Gα proteins.
J Biol Chem. 2019 Jan 11;294(2):531-546. doi: 10.1074/jbc.RA118.006254. Epub 2018 Nov 16.
8
Specificity of Gbetagamma signaling to Kir3 channels depends on the helical domain of pertussis toxin-sensitive Galpha subunits.
J Biol Chem. 2007 Nov 23;282(47):34019-30. doi: 10.1074/jbc.M704928200. Epub 2007 Sep 14.
10
Rapid kinetic BRET measurements to monitor G protein activation by GPCR and non-GPCR proteins.
Methods Cell Biol. 2017;142:145-157. doi: 10.1016/bs.mcb.2017.08.001. Epub 2017 Sep 12.

引用本文的文献

1
Deciphering complexity of GPCR signaling and modulation: implications and perspectives for drug discovery.
Clin Sci (Lond). 2025 May 20;139(10):CS20245182. doi: 10.1042/CS20245182.
2
Intersection of GPCR trafficking and cAMP signaling at endomembranes.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202409027. Epub 2025 Mar 25.
3
Regulation of CXCR4 function by S1P through heteromerization.
Cell Commun Signal. 2025 Feb 26;23(1):111. doi: 10.1186/s12964-025-02099-x.
4
AGS3-based optogenetic GDI induces GPCR-independent Gβγ signalling and macrophage migration.
Open Biol. 2025 Feb;15(2):240181. doi: 10.1098/rsob.240181. Epub 2025 Feb 5.
6
Receptor-dependent influence of R7 RGS proteins on neuronal GIRK channel signaling dynamics.
Prog Neurobiol. 2024 Dec;243:102686. doi: 10.1016/j.pneurobio.2024.102686. Epub 2024 Nov 13.
7
A molecular mechanism to diversify Ca signaling downstream of Gs protein-coupled receptors.
Nat Commun. 2024 Sep 3;15(1):7684. doi: 10.1038/s41467-024-51991-6.
8
Chemokine-mediated F-actin dynamics, polarity, and migration in B lymphocytes depend on WNK1 signaling.
Sci Signal. 2024 Aug 27;17(851):eade1119. doi: 10.1126/scisignal.ade1119.
9
Functional consequences of spatial, temporal and ligand bias of G protein-coupled receptors.
Nat Rev Nephrol. 2024 Nov;20(11):722-741. doi: 10.1038/s41581-024-00869-3. Epub 2024 Jul 22.
10
Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors.
Mol Pharmacol. 2024 Aug 16;106(3):129-144. doi: 10.1124/molpharm.124.000949.

本文引用的文献

1
A Global Map of G Protein Signaling Regulation by RGS Proteins.
Cell. 2020 Oct 15;183(2):503-521.e19. doi: 10.1016/j.cell.2020.08.052. Epub 2020 Oct 1.
2
GPCR-dependent biasing of GIRK channel signaling dynamics by RGS6 in mouse sinoatrial nodal cells.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14522-14531. doi: 10.1073/pnas.2001270117. Epub 2020 Jun 8.
3
The Emerging Role of Gβ Subunits in Human Genetic Diseases.
Cells. 2019 Dec 4;8(12):1567. doi: 10.3390/cells8121567.
4
G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling.
Cell Mol Life Sci. 2019 Nov;76(22):4447-4459. doi: 10.1007/s00018-019-03275-2. Epub 2019 Aug 21.
5
Illuminating G-Protein-Coupling Selectivity of GPCRs.
Cell. 2019 Jun 13;177(7):1933-1947.e25. doi: 10.1016/j.cell.2019.04.044. Epub 2019 May 31.
6
Variable G protein determinants of GPCR coupling selectivity.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12054-12059. doi: 10.1073/pnas.1905993116. Epub 2019 May 29.
7
Live cell optical assay for precise characterization of receptors coupling to Gα12.
Basic Clin Pharmacol Toxicol. 2020 Jun;126 Suppl 6(Suppl 6):88-95. doi: 10.1111/bcpt.13228. Epub 2019 Apr 15.
8
Gγ identity dictates efficacy of Gβγ signaling and macrophage migration.
J Biol Chem. 2018 Feb 23;293(8):2974-2989. doi: 10.1074/jbc.RA117.000872. Epub 2018 Jan 9.
10
Pharmacogenomics of GPCR Drug Targets.
Cell. 2018 Jan 11;172(1-2):41-54.e19. doi: 10.1016/j.cell.2017.11.033. Epub 2017 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验