Hienerwadel R, Thibodeau D, Lenz F, Nabedryk E, Breton J, Kreutz W, Mäntele W
Institut für Biophysik und Strahlenbiologie, Universität Freiburg, FRG.
Biochemistry. 1992 Jun 30;31(25):5799-808. doi: 10.1021/bi00140a016.
Light-induced forward electron transfer in the bacterial photosynthetic reaction center from Rhodobacter sphaeroides was investigated by time-resolved infrared spectroscopy. Using a highly sensitive kinetic photometer based on a tunable IR diode laser source [Mäntele, W., Hienerwadel, R., Lenz, F., Riedel, W. J., Grisar, R., & Tacke, M. (1990a) Spectrosc. Int. 2, 29-35], molecular processes concomitant with electron-transfer reactions were studied in the microsecond-to-second time scale. Infrared (IR) signals in the 1780-1430-cm-1 spectral region, appearing within the instrument time resolution of about 0.5 microseconds, could be assigned to molecular changes of the primary electron donor upon formation of a radical cation and to modes of the primary quinone electron acceptor QA and its environment upon formation of QA-. These IR signals are consistent with steady-state FTIR difference spectra of the P+Q- formation [Mäntele, W., Nabedryk, E., Tavitian, B. A., Kreutz, W., & Breton, J. (1985) FEBS Lett. 187, 227-232; Mäntele, W., Wollenweber, A., Nabedryk, E., & Breton, J. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 8468-8472; Nabedryk, E., Bagley, K. A., Thibodeau, D. L., Bauscher, M., Mäntele, W., & Breton, J. (1990) FEBS Lett. 266, 59-62] and with time-resolved FTIR studies [Thibodeau, D. L., Nabedryk, E., Hienerwadel, R., Lenz, F., Mäntele, W., & Breton, J. (1990) Biochim. Biophys. Acta 1020, 253-259]. At given wavenumbers, kinetic components with a half-time of approximately 120 microseconds were observed and attributed to QA----QB electron transfer. The time-resolved IR signals, in contrast to steady-state experiments where full protein relaxation after electron transfer can occur, allow us to follow directly the modes of QA and QB and their protein environment under conditions of forward electron transfer. Apart from signals attributed to the primary electron donor, signals are proposed to arise not only from the C = O and C = C vibrational modes of the neutral quinones and from the C-O and C-C vibrations of their semiquinone anion form but also from amino acid groups forming their binding sites. Some of the signals appearing with the instrument rise time as well as the transient 120-microseconds signals are interpreted in terms of binding and interaction of the primary and secondary quinone electron acceptor in the Rb. sphaeroides reaction center and of the conformational changes in their binding site.(ABSTRACT TRUNCATED AT 400 WORDS)
通过时间分辨红外光谱研究了球形红细菌光合反应中心中光诱导的正向电子转移。使用基于可调谐红外二极管激光源的高灵敏度动力学光度计[曼特勒,W.,希纳瓦德尔,R.,伦茨,F.,里德尔,W. J.,格里萨尔,R.,& 塔克,M.(1990a)《光谱学国际》2,29 - 35],在微秒到秒的时间尺度上研究了与电子转移反应相伴的分子过程。在1780 - 1430厘米⁻¹光谱区域内、仪器时间分辨率约为0.5微秒时出现的红外(IR)信号,可归因于初级电子供体形成自由基阳离子时的分子变化,以及初级醌电子受体QA形成QA⁻时及其环境的模式。这些IR信号与P⁺Q⁻形成的稳态傅里叶变换红外差谱[曼特勒,W.,纳贝德里克,E.,塔维蒂安,B. A.,克鲁茨,W.,& 布雷顿,J.(1985)《欧洲生物化学学会联合会快报》187,227 - 232;曼特勒,W.,沃伦韦伯,A.,纳贝德里克,E.,& 布雷顿,J.(1988)《美国国家科学院院刊》85,8468 - 8472;纳贝德里克,E.,巴格利,K. A.,蒂博多,D. L.,鲍舍尔,M.,曼特勒,W.,& 布雷顿,J.(1990)《欧洲生物化学学会联合会快报》266,59 - 62]以及时间分辨傅里叶变换红外研究[蒂博多,D. L.,纳贝德里克,E.,希纳瓦德尔,R.,伦茨,F.,曼特勒,W.,& 布雷顿,J.(1990)《生物化学与生物物理学报》1020,253 - 259]一致。在给定波数下,观察到半衰期约为120微秒的动力学成分,并归因于QA⁻----QB电子转移。与稳态实验不同,在稳态实验中电子转移后蛋白质可完全弛豫,而时间分辨红外信号使我们能够在正向电子转移条件下直接跟踪QA和QB的模式及其蛋白质环境。除了归因于初级电子供体的信号外,还提出信号不仅来自中性醌的C = O和C = C振动模式以及它们半醌阴离子形式的C - O和C - C振动,还来自形成其结合位点的氨基酸基团。一些在仪器上升时间出现的信号以及120微秒的瞬态信号,根据球形红细菌反应中心中初级和次级醌电子受体的结合与相互作用以及它们结合位点的构象变化进行了解释。(摘要截于400字)