Graige M S, Feher G, Okamura M Y
Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319, USA.
Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11679-84. doi: 10.1073/pnas.95.20.11679.
The mechanism of the electron transfer reaction, QA-.QB --> QAQB-., was studied in isolated reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides by replacing the native Q10 in the QA binding site with quinones having different redox potentials. These substitutions are expected to change the intrinsic electron transfer rate by changing the redox free energy (i.e., driving force) for electron transfer without affecting other events that may be associated with the electron transfer (e.g., protein dynamics or protonation). The electron transfer from QA-. to QB was measured by three independent methods: a functional assay involving cytochrome c2 to measure the rate of QA-. oxidation, optical kinetic spectroscopy to measure changes in semiquinone absorption, and kinetic near-IR spectroscopy to measure electrochromic shifts that occur in response to electron transfer. The results show that the rate of the observed electron transfer from QA-. to QB does not change as the redox free energy for electron transfer is varied over a range of 150 meV. The strong temperature dependence of the observed rate rules out the possibility that the reaction is activationless. We conclude, therefore, that the independence of the observed rate on the driving force for electron transfer is due to conformational gating, that is, the rate limiting step is a conformational change required before electron transfer. This change is proposed to be the movement, controlled kinetically either by protein dynamics or intermolecular interactions, of QB by approximately 5 A as observed in the x-ray studies of Stowell et al. [Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E. & Feher, G. (1997) Science 276, 812-816].
通过用具有不同氧化还原电位的醌类取代光合细菌球形红杆菌分离反应中心中QA结合位点的天然Q10,研究了电子转移反应QA-.QB→QAQB-.的机制。预期这些取代会通过改变电子转移的氧化还原自由能(即驱动力)来改变固有电子转移速率,而不会影响可能与电子转移相关的其他事件(例如蛋白质动力学或质子化)。通过三种独立方法测量了从QA-.到QB的电子转移:一种涉及细胞色素c2的功能测定法,用于测量QA-.的氧化速率;光学动力学光谱法,用于测量半醌吸收的变化;以及动力学近红外光谱法,用于测量响应电子转移而发生的电致变色位移。结果表明,随着电子转移的氧化还原自由能在150 meV范围内变化,观察到的从QA-.到QB的电子转移速率并未改变。观察到的速率对温度的强烈依赖性排除了该反应无活化能的可能性。因此,我们得出结论,观察到的速率对电子转移驱动力的独立性是由于构象门控,即限速步骤是电子转移之前所需的构象变化。如斯托韦尔等人的X射线研究中所观察到的[斯托韦尔,M. H. B.,麦克菲利普斯,T. M.,里斯,D. C.,索尔蒂斯,S. M.,阿布雷施,E.和费赫尔,G.(1997年)《科学》276,812 - 816],这种变化被认为是由蛋白质动力学或分子间相互作用动力学控制的QB移动约5埃。