Suppr超能文献

人工神经网络预测胶束电动色谱中某些苯衍生物和杂环化合物的保留因子

Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellar electrokinetic chromatography.

作者信息

Golmohammadi Hassan, Fatemi Mohammed H

机构信息

Department of Chemistry, Mazandaran University, Babolsar, Iran.

出版信息

Electrophoresis. 2005 Sep;26(18):3438-44. doi: 10.1002/elps.200500203.

Abstract

A 5-4-1 artificial neural network (ANN) was constructed and trained for prediction of the retention factors of some benzene derivatives and heterocyclic compounds in micellar electrokinetic chromatography (MEKC) based on quantitative structure-property relationship (QSPR). The inputs of this network are theoretically derived descriptors that were chosen by the stepwise variable selection techniques. These descriptors are: molecular surface area, maximum value of electron density on atom in molecule, path four connectivity index, average molecular weight, and sum of atomic polarizability which were selected by using stepwise multiple linear regression as a feature selection technique. The standard errors of training, test, and validation sets for the ANN model are 0.091, 0.119, and 0.114, respectively. Results obtained showed that nonlinear model can simulate the relationship between the structural descriptors and the retention factors of the molecules in data set accurately. Also the appearance of these descriptors in QSPR models reveals the role of electronic and steric interactions in solute retention in MEKC.

摘要

基于定量结构-性质关系(QSPR)构建并训练了一个5-4-1人工神经网络(ANN),用于预测胶束电动色谱(MEKC)中一些苯衍生物和杂环化合物的保留因子。该网络的输入是通过逐步变量选择技术理论推导出来的描述符。这些描述符是:分子表面积、分子中原子上电子密度的最大值、路径四连接性指数、平均分子量以及原子极化率之和,这些描述符是通过使用逐步多元线性回归作为特征选择技术来选择的。ANN模型的训练集、测试集和验证集的标准误差分别为0.091、0.119和0.114。所得结果表明,非线性模型能够准确模拟数据集中结构描述符与分子保留因子之间的关系。此外,这些描述符在QSPR模型中的出现揭示了电子和空间相互作用在MEKC中溶质保留中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验