Park Chaeho, Meng Lu, Stanton Leslie H, Collins Robert E, Mast Steven W, Yi Xiaobing, Strachan Heather, Moremen Kelley W
Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.
J Biol Chem. 2005 Nov 4;280(44):37204-16. doi: 10.1074/jbc.M508930200. Epub 2005 Aug 22.
In humans and rodents, the lysosomal catabolism of core Man(3)GlcNAc(2) N-glycan structures is catalyzed by the concerted action of several exoglycosidases, including a broad specificity lysosomal alpha-mannosidase (LysMan), core-specific alpha1,6-mannosidase, beta-mannosidase, and cleavage at the reducing terminus by a di-N-acetylchitobiase. We describe here the first cloning, expression, purification, and characterization of a novel human glycosylhydrolase family 38 alpha-mannosidase with catalytic characteristics similar to those established previously for the core-specific alpha1,6-mannosidase (acidic pH optimum, inhibition by swainsonine and 1,4-dideoxy-1,4-imino-d-mannitol, and stimulation by Co(2+) and Zn(2+)). Substrate specificity studies comparing the novel human alpha-mannosidase with human LysMan revealed that the former enzyme efficiently cleaved only the alpha1-6mannose residue from Man(3)GlcNAc but not Man(3)GlcNAc(2) or other larger high mannose oligosaccharides, indicating a requirement for chitobiase action before alpha1,6-mannosidase activity. In contrast, LysMan cleaved all of the alpha-linked mannose residues from high mannose oligosaccharides except the core alpha1-6mannose residue. alpha1,6-Mannosidase transcripts were ubiquitously expressed in human tissues, and expressed sequence tag searches identified homologous sequences in murine, porcine, and canine databases. No expressed sequence tags were identified for bovine alpha1,6-mannosidase, despite the identification of two sequence homologs in the bovine genome. The lack of conservation in 5'-flanking sequences for the bovine alpha1,6-mannosidase genes may lead to defective transcription similar to transcription defects in the bovine chitobiase gene. These results suggest that the chitobiase and alpha1,6-mannosidase function in tandem for mammalian lysosomal N-glycan catabolism.
在人类和啮齿动物中,核心甘露糖(3)N-乙酰葡糖胺(2)N-聚糖结构的溶酶体分解代谢由几种外切糖苷酶协同作用催化,包括具有广泛特异性的溶酶体α-甘露糖苷酶(LysMan)、核心特异性α1,6-甘露糖苷酶、β-甘露糖苷酶,以及由二-N-乙酰壳二糖酶在还原端进行切割。我们在此描述了一种新型人类糖基水解酶家族38α-甘露糖苷酶的首次克隆、表达、纯化及特性鉴定,其催化特性与先前确定的核心特异性α1,6-甘露糖苷酶相似(最适酸性pH、被苦马豆素和1,4-二脱氧-1,4-亚氨基-D-甘露糖醇抑制,以及被Co(2+)和Zn(2+)刺激)。将新型人类α-甘露糖苷酶与人类LysMan进行底物特异性研究表明,前者仅能有效地从甘露糖(3)N-乙酰葡糖胺中切割α1-6甘露糖残基,而不能切割甘露糖(3)N-乙酰葡糖胺(2)或其他更大的高甘露糖寡糖,这表明在α1,6-甘露糖苷酶活性之前需要壳二糖酶的作用。相比之下,LysMan能从高甘露糖寡糖中切割除核心α1-6甘露糖残基之外的所有α-连接的甘露糖残基。α1,6-甘露糖苷酶转录本在人类组织中普遍表达,表达序列标签搜索在小鼠、猪和犬的数据库中鉴定出同源序列。尽管在牛基因组中鉴定出两个序列同源物,但未鉴定出牛α1,6-甘露糖苷酶的表达序列标签。牛α1,6-甘露糖苷酶基因5'-侧翼序列缺乏保守性可能导致转录缺陷,类似于牛壳二糖酶基因中的转录缺陷。这些结果表明,壳二糖酶和α1,6-甘露糖苷酶在哺乳动物溶酶体N-聚糖分解代谢中协同发挥作用。