Kendler Jonatan, Wӧls Florian, Thapliyal Saurabh, Arcalis Elsa, Gabriel Hanna, Kubitschek Sascha, Malzl Daniel, Strobl Maria R, Palmberger Dieter, Luber Thomas, Unverzagt Carlo, Paschinger Katharina, Glauser Dominique A, Wilson Iain B H, Yan Shi
Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria.
Department für Chemie, Universität für Bodenkultur, Wien, Austria.
J Biol Chem. 2024 Dec;300(12):107944. doi: 10.1016/j.jbc.2024.107944. Epub 2024 Oct 29.
N-glycans with complex core chitobiose modifications are observed in various free-living and parasitic nematodes but are absent in mammals. Using Caenorhabditis elegans as a model, we demonstrated that the core N-acetylglucosamine (GlcNAc) residues are modified by three fucosyltransferases (FUTs), namely FUT-1, FUT-6, and FUT-8. Interestingly, FUT-6 can only fucosylate N-glycans lacking the α1,6-mannose upper arm, indicating that a specific α-mannosidase is required to generate substrates for subsequent FUT-6 activity. By analyzing the N-glycomes of aman-3 KOs using offline HPLC-MALDI-TOF MS/MS, we observed that the absence of aman-3 abolishes α1,3-fucosylation of the distal GlcNAc of N-glycans, which suggests that AMAN-3 is the relevant mannosidase on whose action FUT-6 depends. Enzymatic characterization of recombinant AMAN-3 and confocal microscopy studies using a knock-in strain (aman-3::eGFP) demonstrated a Golgi localization. In contrast to the classical Golgi α-mannosidase II (AMAN-2), AMAN-3 displayed a cobalt-dependent α1,6-mannosidase activity toward N-glycans. Using AMAN-3 and other C. elegans glycoenzymes, we were able to mimic nematode N-glycan biosynthesis in vitro by remodeling a fluorescein conjugated-glycan and generate a tri-fucosylated structure. In addition, using a high-content computer-assisted C. elegans analysis platform, we observed that aman-3 deficient worms display significant developmental delays, morphological, and behavioral alterations in comparison to the WT. Our data demonstrated that AMAN-3 is a Golgi α-mannosidase required for core fucosylation of the distal GlcNAc of N-glycans. This enzyme is essential for the formation of the unusual tri-fucosylated chitobiose modifications in nematodes, which may play important roles in nematode development and behavior.
在各种自由生活和寄生线虫中观察到具有复杂核心壳二糖修饰的N-聚糖,但在哺乳动物中不存在。以秀丽隐杆线虫为模型,我们证明核心N-乙酰葡糖胺(GlcNAc)残基由三种岩藻糖基转移酶(FUT)修饰,即FUT-1、FUT-6和FUT-8。有趣的是,FUT-6只能对缺乏α1,6-甘露糖上臂的N-聚糖进行岩藻糖基化,这表明需要一种特定的α-甘露糖苷酶来产生后续FUT-6活性的底物。通过使用离线HPLC-MALDI-TOF MS/MS分析aman-3基因敲除线虫的N-聚糖组,我们观察到aman-3的缺失消除了N-聚糖远端GlcNAc的α1,3-岩藻糖基化,这表明AMAN-3是FUT-6作用所依赖的相关甘露糖苷酶。重组AMAN-3的酶学特性以及使用敲入菌株(aman-3::eGFP)的共聚焦显微镜研究表明其定位于高尔基体。与经典的高尔基体α-甘露糖苷酶II(AMAN-2)不同,AMAN-3对N-聚糖表现出钴依赖性的α1,6-甘露糖苷酶活性。使用AMAN-3和其他秀丽隐杆线虫糖酶,我们能够通过重塑荧光素偶联聚糖在体外模拟线虫N-聚糖生物合成,并生成三岩藻糖基化结构。此外,使用高内涵计算机辅助秀丽隐杆线虫分析平台,我们观察到与野生型相比,aman-3缺陷线虫表现出明显的发育延迟、形态和行为改变。我们的数据表明,AMAN-3是N-聚糖远端GlcNAc核心岩藻糖基化所需的高尔基体α-甘露糖苷酶。这种酶对于线虫中不寻常的三岩藻糖基化壳二糖修饰的形成至关重要,这可能在线虫发育和行为中发挥重要作用。