Johnson Robert E, Prakash Louise, Prakash Satya
Sealy Center for Molecular Science, University of Texas Medical Branch, 6.104 Blocker Medical Research Building, Galveston, TX 77555-1061, USA.
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12359-64. doi: 10.1073/pnas.0504380102. Epub 2005 Aug 22.
UV-light-induced cyclobutane pyrimidine dimers (CPDs) present a severe block to synthesis by replicative DNA polymerases (Pols), whereas Poleta promotes proficient and error-free replication through CPDs. Although the archael Dpo4, which, like Poleta, belongs to the Y family of DNA Pols, can also replicate through a CPD, it is much less efficient than Poleta. The x-ray crystal structure of Dpo4 complexed with either the 3'-thymine (T) or the 5' T of a cis-syn TT dimer has indicated that, whereas the 3' T of the dimer forms a Watson-Crick base pair with the incoming dideoxy ATP, the 5' T forms a Hoogsteen base pair with the dideoxy ATP in syn conformation. Based upon these observations, a similar mechanism involving Hoogsteen base pairing of the 5' T of the dimer with the incoming A has been proposed for Poleta. Here we examine the mechanisms of CPD bypass by Dpo4 and Poleta using nucleotide analogs that specifically disrupt the Hoogsteen or Watson-Crick base pairing. Our results show that both Dpo4 and Poleta incorporate dATP opposite the 5' T of the CPD via Watson-Crick base pairing and not by Hoogsteen base pairing. Furthermore, opposite the 3' T of the dimer, the two Pols differ strikingly in the mechanisms of dATP incorporation, with Dpo4 incorporating opposite an abasic-like intermediate and Poleta using the normal Watson-Crick base pairing. These observations have important implications for the mechanisms used for the inefficient vs. efficient bypass of CPDs by DNA Pols.
紫外线诱导的环丁烷嘧啶二聚体(CPD)对复制性DNA聚合酶(Pols)的合成造成严重阻碍,而聚合酶η(Poleta)则能促进通过CPD进行高效且无错误的复制。尽管古细菌的Dpo4与Poleta一样,属于Y家族DNA聚合酶,也能通过CPD进行复制,但其效率远低于Poleta。与顺式-顺式胸腺嘧啶(TT)二聚体的3'-胸腺嘧啶(T)或5'-T结合的Dpo4的X射线晶体结构表明,二聚体的3'-T与进入的双脱氧ATP形成沃森-克里克碱基对,而5'-T与处于顺式构象的双脱氧ATP形成 hoogsteen碱基对。基于这些观察结果,有人提出Poleta也存在类似机制,即二聚体的5'-T与进入的A形成Hoogsteen碱基对。在这里,我们使用特异性破坏Hoogsteen或沃森-克里克碱基对的核苷酸类似物,研究Dpo4和Poleta绕过CPD的机制。我们的结果表明,Dpo4和Poleta都是通过沃森-克里克碱基对而非Hoogsteen碱基对,在CPD的5'-T对面掺入dATP。此外,在二聚体的3'-T对面,这两种聚合酶在掺入dATP的机制上有显著差异,Dpo4在类似无碱基的中间体对面掺入,而Poleta使用正常的沃森-克里克碱基对。这些观察结果对于DNA聚合酶对CPD进行低效与高效绕过所采用的机制具有重要意义。