Suppr超能文献

基于抗体微阵列分析的肺癌患者独特血清蛋白谱,涉及多种丰富蛋白。

Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis.

作者信息

Gao Wei-Min, Kuick Rork, Orchekowski Randal P, Misek David E, Qiu Ji, Greenberg Alissa K, Rom William N, Brenner Dean E, Omenn Gilbert S, Haab Brian B, Hanash Samir M

机构信息

Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

BMC Cancer. 2005 Aug 23;5:110. doi: 10.1186/1471-2407-5-110.

Abstract

BACKGROUND

Cancer serum protein profiling by mass spectrometry has uncovered mass profiles that are potentially diagnostic for several common types of cancer. However, direct mass spectrometric profiling has a limited dynamic range and difficulties in providing the identification of the distinctive proteins. We hypothesized that distinctive profiles may result from the differential expression of relatively abundant serum proteins associated with the host response.

METHODS

Eighty-four antibodies, targeting a wide range of serum proteins, were spotted onto nitrocellulose-coated microscope slides. The abundances of the corresponding proteins were measured in 80 serum samples, from 24 newly diagnosed subjects with lung cancer, 24 healthy controls, and 32 subjects with chronic obstructive pulmonary disease (COPD). Two-color rolling-circle amplification was used to measure protein abundance.

RESULTS

Seven of the 84 antibodies gave a significant difference (p < 0.01) for the lung cancer patients as compared to healthy controls, as well as compared to COPD patients. Proteins that exhibited higher abundances in the lung cancer samples relative to the control samples included C-reactive protein (CRP; a 13.3 fold increase), serum amyloid A (SAA; a 2.0 fold increase), mucin 1 and alpha-1-antitrypsin (1.4 fold increases). The increased expression levels of CRP and SAA were validated by Western blot analysis. Leave-one-out cross-validation was used to construct Diagonal Linear Discriminant Analysis (DLDA) classifiers. At a cutoff where all 56 of the non-tumor samples were correctly classified, 15/24 lung tumor patient sera were correctly classified.

CONCLUSION

Our results suggest that a distinctive serum protein profile involving abundant proteins may be observed in lung cancer patients relative to healthy subjects or patients with chronic disease and may have utility as part of strategies for detecting lung cancer.

摘要

背景

通过质谱分析进行癌症血清蛋白谱分析已发现了一些可能对几种常见癌症类型具有诊断价值的质谱图。然而,直接质谱分析的动态范围有限,且在识别独特蛋白质方面存在困难。我们推测,独特的谱图可能是由与宿主反应相关的相对丰富的血清蛋白的差异表达所致。

方法

将84种针对多种血清蛋白的抗体点样于硝酸纤维素包被的显微镜载玻片上。在80份血清样本中测量相应蛋白质的丰度,这些样本来自24名新诊断的肺癌患者、24名健康对照者以及32名慢性阻塞性肺疾病(COPD)患者。采用双色滚环扩增法测量蛋白质丰度。

结果

与健康对照者相比,以及与COPD患者相比,84种抗体中的7种在肺癌患者中呈现出显著差异(p < 0.01)。相对于对照样本,在肺癌样本中丰度较高的蛋白质包括C反应蛋白(CRP;增加了13.3倍)、血清淀粉样蛋白A(SAA;增加了2.0倍)、粘蛋白1和α-1抗胰蛋白酶(增加了1.4倍)。通过蛋白质印迹分析验证了CRP和SAA表达水平的升高。采用留一法交叉验证构建对角线性判别分析(DLDA)分类器。在所有56份非肿瘤样本均被正确分类的临界值下,24份肺癌患者血清中有15份被正确分类。

结论

我们的结果表明,相对于健康受试者或慢性病患者,肺癌患者可能会出现涉及丰富蛋白质的独特血清蛋白谱,并且这可能作为肺癌检测策略的一部分具有实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e9c/1198221/271a06dbe55b/1471-2407-5-110-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验