Suppr超能文献

用于空间相关多变量数据重复测量的广义线性潜在变量模型。

Generalized linear latent variable models for repeated measures of spatially correlated multivariate data.

作者信息

Zhu J, Eickhoff J C, Yan P

机构信息

Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison, Wisconsin 53706, USA.

出版信息

Biometrics. 2005 Sep;61(3):674-83. doi: 10.1111/j.1541-0420.2005.00343.x.

Abstract

Observations of multiple-response variables across space and over time occur often in environmental and ecological studies. Compared to purely spatial models for a single response variable in the exponential family of distributions, fewer statistical tools are available for multiple-response variables that are not necessarily Gaussian. An exception is a common-factor model developed for multivariate spatial data by Wang and Wall (2003, Biostatistics 4, 569-582). The purpose of this article is to extend this multivariate space-only model and develop a flexible class of generalized linear latent variable models for multivariate spatial-temporal data. For statistical inference, maximum likelihood estimates and their standard deviations are obtained using a Monte Carlo EM algorithm. We also use a novel way to automatically adjust the Monte Carlo sample size, which facilitates the convergence of the Monte Carlo EM algorithm. The methodology is illustrated by an ecological study of red pine trees in response to bark beetle challenges in a forest stand of Wisconsin.

摘要

在环境和生态研究中,经常会出现对多个响应变量在空间和时间上的观测。与指数分布族中针对单个响应变量的纯空间模型相比,针对不一定呈高斯分布的多个响应变量的统计工具较少。一个例外是Wang和Wall(2003年,《生物统计学》4,569 - 582)为多变量空间数据开发的公共因子模型。本文的目的是扩展这个仅适用于多变量空间的模型,并为多变量时空数据开发一类灵活的广义线性潜在变量模型。对于统计推断,使用蒙特卡罗期望最大化(EM)算法获得最大似然估计及其标准差。我们还使用了一种新颖的方法来自动调整蒙特卡罗样本大小,这有助于蒙特卡罗EM算法的收敛。通过对威斯康星州一片林分中红松树应对树皮甲虫挑战的生态研究来说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验