Wang Fujun, Wall Melanie M
Eli Lilly and Company, Indianapolis, IN 46285, USA.
Biostatistics. 2003 Oct;4(4):569-82. doi: 10.1093/biostatistics/4.4.569.
There are often two types of correlations in multivariate spatial data: correlations between variables measured at the same locations, and correlations of each variable across the locations. We hypothesize that these two types of correlations are caused by a common spatially correlated underlying factor. Under this hypothesis, we propose a generalized common spatial factor model. The parameters are estimated using the Bayesian method and a Markov chain Monte Carlo computing technique. Our main goals are to determine which observed variables share a common underlying spatial factor and also to predict the common spatial factor. The model is applied to county-level cancer mortality data in Minnesota to find whether there exists a common spatial factor underlying the cancer mortality throughout the state.
在相同位置测量的变量之间的相关性,以及每个变量在不同位置之间的相关性。我们假设这两种类型的相关性是由一个共同的空间相关潜在因素引起的。在此假设下,我们提出了一个广义共同空间因素模型。使用贝叶斯方法和马尔可夫链蒙特卡罗计算技术估计参数。我们的主要目标是确定哪些观测变量共享一个共同的潜在空间因素,并预测这个共同的空间因素。该模型应用于明尼苏达州的县级癌症死亡率数据,以发现该州癌症死亡率背后是否存在一个共同的空间因素。