Suppr超能文献

三维旋转X射线血管造影术(3D-RA)中血液传播的重建。

Reconstruction of blood propagation in three-dimensional rotational X-ray angiography (3D-RA).

作者信息

Schmitt Holger, Grass Michael, Suurmond Rolf, Köhler Thomas, Rasche Volker, Hähnel Stefan, Heiland Sabine

机构信息

Philips Medical Systems, X-Ray Predevelopment, NL-5680 DA Best, The Netherlands.

出版信息

Comput Med Imaging Graph. 2005 Oct;29(7):507-20. doi: 10.1016/j.compmedimag.2005.03.006. Epub 2005 Sep 2.

Abstract

This paper presents a framework of non-interactive algorithms for the mapping of blood flow information to vessels in 3D-RA images. With the presented method, mapping of flow information to 3D-RA images is done automatically without user interaction. So far, radiologists had to perform this task by extensive image comparisons and did not obtain visualizations of the results. In our approach, flow information is reconstructed by forward projection of vessel pieces in a 3D-RA image to a two-dimensional projection series capturing the propagation of a short additional contrast agent bolus. For accurate 2D-3D image registration, an efficient patient motion compensation technique is introduced. As an exemplary flow-related quantity, bolus arrival times are reconstructed for the vessel pieces by matching of intensity-time curves. A plausibility check framework was developed which handles projection ambiguities and corrects for noisy flow reconstruction results. It is based on a linear programming approach to model the feeding structure of the vessel. The flow reconstruction method was applied to 12 cases of cerebral stenoses, AVMs and aneurysms, and it proved to be feasible in the clinical environment. The propagation of the injected contrast agent was reconstructed and visualized in three-dimensional images. The flow reconstruction method was able to visualize different types of useful information. In cases of stenosis of the middle cerebral artery (MCA), flow reconstruction can reveal impeded blood flow depending on the severeness of the stenosis. With cases of AVMs, flow reconstruction can clarify the feeding structure. The presented methods handle the problems imposed by clinical demands such as non-interactive algorithms, patient motion compensation, short reconstruction times, and technical requirements such as correction of noisy bolus arrival times and handling of overlapping vessel pieces. Problems occurred mainly in the reconstruction and segmentation of 3D-RA images in cases of complex AVMs. The concentration of injected contrast agent was often not sufficient to provide highly contrasted vessels in 3D-RA images. Another segmentation-related problem is known as 'kissing vessels' [19]. Kissing vessel artifacts introduce artificial vessel junctions and thereby distort the feeding structure of the vessel. This may finally cause implausible flow reconstruction results and inverse flow directions in vessel segments. We are currently planning to validate our reconstruction results using particle imaging velocimetry (PIV). PIV experiments with phantoms, for which the true flow parameters are known, will allow for the assessment of the accuracy of our contrast agent based method. In the context of computational fluid dynamics techniques, the potential of the presented flow reconstruction method is high. Flow reconstruction results based on the presented method could be used both as boundary conditions for simulations and as a reference for the validation of simulation results. Computational fluid dynamics provide useful information such as arterial wall shear stress and complex flow patterns in aneurysms.

摘要

本文提出了一种非交互式算法框架,用于将血流信息映射到三维旋转血管造影(3D-RA)图像中的血管上。使用所提出的方法,血流信息到3D-RA图像的映射无需用户交互即可自动完成。到目前为止,放射科医生必须通过广泛的图像比较来执行此任务,并且无法获得结果的可视化。在我们的方法中,通过将3D-RA图像中的血管片段向前投影到捕获短时间额外造影剂团注传播的二维投影序列来重建血流信息。为了进行精确的二维到三维图像配准,引入了一种有效的患者运动补偿技术。作为与血流相关的一个示例性量,通过强度-时间曲线的匹配为血管片段重建团注到达时间。开发了一个合理性检查框架,该框架处理投影模糊性并校正有噪声的血流重建结果。它基于一种线性规划方法来对血管的供血结构进行建模。血流重建方法应用于12例脑狭窄、动静脉畸形(AVM)和动脉瘤病例,结果证明在临床环境中是可行的。注入的造影剂的传播在三维图像中被重建并可视化。血流重建方法能够可视化不同类型的有用信息。在大脑中动脉(MCA)狭窄的病例中,血流重建可以根据狭窄的严重程度揭示血流受阻情况。在AVM病例中,血流重建可以阐明供血结构。所提出的方法解决了临床需求带来的问题,如非交互式算法、患者运动补偿、短重建时间,以及技术要求,如校正有噪声的团注到达时间和处理重叠的血管片段。问题主要出现在复杂AVM病例的3D-RA图像的重建和分割中。注入的造影剂的浓度通常不足以在3D-RA图像中提供高对比度的血管。另一个与分割相关的问题被称为“相邻血管”[19]。相邻血管伪影会引入人为的血管连接,从而扭曲血管的供血结构。这最终可能导致不合理的血流重建结果和血管段中的逆流方向。我们目前计划使用粒子图像测速技术(PIV)来验证我们的重建结果。对已知真实流动参数的模型进行PIV实验,将能够评估我们基于造影剂的方法的准确性。在计算流体动力学技术的背景下,所提出的血流重建方法具有很高的潜力。基于所提出方法的血流重建结果既可以用作模拟的边界条件,也可以用作验证模拟结果的参考。计算流体动力学提供有用的信息,如动脉瘤中的动脉壁剪切应力和复杂的流动模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验