Herdes Carmelo, Santos Miguel A, Medina Francisco, Vega Lourdes F
Institut de Ciència de Materials de Barcelona, (ICMAB-CSIC), Consejo Superior de Investigaciones Científicas, Campus de la U.A.B., Bellaterra, 08193 Barcelona, Spain.
Langmuir. 2005 Sep 13;21(19):8733-42. doi: 10.1021/la050977n.
We combine here a regularization procedure with individual adsorption isotherms obtained from grand canonical Monte Carlo simulations in order to obtain reliable pore size distributions. The methodology is applied to two hexagonal high-ordered silica materials: SBA-15 and PHTS, synthesized in our laboratory. Feasible pore size distributions are calculated through an adaptable procedure of deconvolution over the adsorption integral equation, with two necessary inputs: the experimental adsorption data and individual adsorption isotherms, assuming the validity of the independent pore model. The application of the deconvolution procedure implies an adequate grid size evaluation (i.e., numbers of pores and relative pressures to be considered for the inversion, or kernel size), the fulfillment of the discret Picard condition, and the appropriate choice of the regularization parameter (L-curve criteria). Assuming cylindrical geometry for both porous materials, the same set of individual adsorption isotherms generated from molecular simulations can be used to construct the kernel to obtain the PSD of SBA-15 and PHTS. The PSD robustness is measured imposing random errors over the experimental data. Excellent agreement is found between the calculated and the experimental global adsorption isotherms for both materials. Molecular simulations provide new insights into the studied systems, pointing out the need of high-resolution isotherms to describe the presence of complementary microporosity in these materials.
我们在此将一种正则化程序与从巨正则蒙特卡罗模拟获得的个体吸附等温线相结合,以获得可靠的孔径分布。该方法应用于在我们实验室合成的两种六方高阶二氧化硅材料:SBA - 15和PHTS。通过对吸附积分方程进行适应性反褶积程序来计算可行的孔径分布,该程序有两个必要输入:实验吸附数据和个体吸附等温线,并假设独立孔模型有效。反褶积程序的应用意味着要进行适当的网格尺寸评估(即反演时要考虑的孔数和相对压力,或核尺寸),满足离散皮卡德条件,以及适当选择正则化参数(L曲线准则)。假设两种多孔材料均为圆柱形几何形状,则可以使用从分子模拟生成的同一组个体吸附等温线来构建核,以获得SBA - 15和PHTS的孔径分布。通过对实验数据施加随机误差来测量孔径分布的稳健性。两种材料的计算全局吸附等温线与实验全局吸附等温线之间都取得了极好的一致性。分子模拟为所研究的系统提供了新的见解,指出需要高分辨率等温线来描述这些材料中互补微孔的存在。